skip to Main Content





Merit Network was founded by research faculty, and research remains the wellspring of innovation today. Our statewide network is an ideal laboratory and test bed for new Internet technologies and services.

“A myth once believed by some is that after a network is installed and working, it requires no further development. In reality, network technology like computers, continues to evolve. Merit has always been committed to pushing the networking state-of-the-art.”

Merit’s First President


From 1987 until April 1995, Merit managed and re-engineered the NSFNET Backbone Service project in partnership with the National Science Foundation, ANS, IBM, MCI, and the State of Michigan. The NSFNET led directly to the growth of the commercial Internet.

Merit’s Research and Development (Merit R & D) team collaborates with researchers in academia and industry within Michigan and nationwide. Led by Dr. William J. “Joe” Adams, Merit’s R & D program aims at performing ground-breaking research that would benefit Merit’s Members, Michigan and the society. The group currently focuses on Internet measurements that provide insights into the evolution of the Internet and the adoption of new protocols, on network security, and on the development of tools that can help network operators better monitor and secure their networks.

Some of the historically significant contributions of Merit’s R & D to the networking community include (i) the development and deployment of the world’s largest public registry of Internet data, Merit RADb, (ii) the leadership role in the GateD Consortium that provided a platform for designing and testing new network routing protocols, and (iii) the pioneering work of distributed dial-in and AAA mechanisms. Other notable past research projects include the Internet Performance Measurement and Analysis (IPMA) project that helped lay the foundation for Internet data collection and statistical analysis (in collaboration with the Cooperative Association for Internet Data Analysis (CAIDA) and the National Laboratory for Applied Network Research (NLANR), the Flamingo visualization tools, and the BGPTables Web-based toolset for analysis of routing data.


Merit is Currently Assisting with the Following National Research Projects:

Trusted Cyber Risk Research Data Sharing

The Information Marketplace for Policy and Analysis of Cyber-risk & Trust (IMPACT) program supports the global cyber risk research community by coordinating and developing real world data and information sharing capabilities (tools, models, and methodologies). In order to accelerate solutions around cyber risk issues and infrastructure security the IMPACT program enables empirical data and information sharing between and among the global cyber security research & development community in academia, industry and the government.

In 2016, PREDICT transitions to IMPACT: Information Marketplace for Policy and Analysis of Cyber-risk & Trust, a name meant to reflect an evolved implementation of the program’s goals:

  • Marketplace – A more open platform to connect and socialize data supply & demand;
  • Policy and Analysis – Research infrastructure and analysis driven by and for real world issues; and
  • Cyber-risk & Trust – Beyond just “defense” and “threats”, Information as a critical infrastructure itself; responsible innovation

IMPACT offers a unique, distributed research data repository supported by a streamlined legal framework and centralized coordination of a controlled distribution of datasets. This centralized brokering and distributed provisioning between the data providers, data hosts and researchers addresses the operational, trust and administrative costs and challenges that impede sustainable and scalable data sharing. IMPACT continually adds new data that is responsive to cyber risk management (e.g., attacks and measurements) so the R&D community has timely and high value information to enhance research innovation and quality. The IMPACT model also serves as a laboratory for testing various data sharing models whether it be traditional batch transfers or newer data-as-a-service (DaaS) and visualization techniques, for example.

IMPACT consists of four components supporting core functional requirements for data sharing: metadata discovery, data and tool matchmaking, trusted brokering, and a social feedback loop.

This project requires the approval of an Institutional Review Board (IRB) application by the University of Michigan’s Health Sciences and Behavioral Sciences Institutional Review Board (IRB-HSBS). The currently approved IRB can be found here. This IRB has been the collective effort of all present and past project PIs, including Prof. Farnam Jahanian, Prof. Michael Bailey, Dr. Joe Adams and Dr. Michael Kallitsis.

Recent Publications:

AMON: An Open Source Architecture for Online Monitoring, Statistical Analysis and Forensics of Multi-gigabit Streams

  • by Michael Kallitsis, Stilian Stoev, Shrijita Bhattacharya, George Michailidis, Merit Technical Report (Merit-TR-2016-01), March 2016.

Leveraging Internet Background Radiation for Opportunistic Network Analysis

  • By K. Benson, A. Dainotti, K. Claffy, A. Snoeren, and M. Kallitsis, Internet Measurement Conference (IMC), October 2015.

Taming the 800 Pound Gorilla: The Rise and Decline of NTP DDoS Attacks

  • By Jakub Czyz, University of Michigan; Michael Kallitsis and Manish Karir, Merit Network, Inc.; Manaf Gharaibeh and Christos Papadopoulos, Colorado State University; Michael Bailey University of Michigan and University of Illinois. Published in IMC ’14 Proceedings of the 2014 Conference on Internet Measurement Conference, November 2014.

Estimating Internet Address Space Usage through Passive Measurements

  • By Alberto Dainotti, Karyn Benson, Alistair King, Michael Kallitsis, Eduard Glatz, Xenofontas Dimitropoulos. Published in ACM SIGCOMM Computer Communication Review, December 31, 2013.

Understanding IPv6 Internet Background Radiation

  • By Jakub Czyz, Kyle Lady, Sam Miller, Michael Bailey, Michael Kallitsis, and Manish Karir. In Proceedings of the 13th ACM SIGCOMM Conference on Internet Measurement (IMC ’13), Barcelona, Spain, October 2013.

Integrated Smart Grid Analytics for Anomaly Detection

The overarching objective of the modernized electric grid, the smart grid, is to integrate two-way communication technologies across power generation, transmission and distribution to deliver electricity efficiently, securely and cost- effectively. However, real-time messaging exposes the entire grid to security threats ranging from attacks that disable information exchange between smart meters and data fusion centers to spurious payload content that would lead to incorrect assessment of actual demand. Such nefarious activities can compromise grid stability and efficiency. Hence, it is important to ensure secure communications and quickly detect malicious activity; this project aims for accurate and quick detection of false data injection attacks in smart grids.

The main goal of this project is the quick detection of malicious activities that can compromise critical infrastructure, such as the smart power grid. Our methodology to deal with the threat of false data injection attacks is based on correlative monitoring in both home-area networks and also the wide-area setting. For example, in a home-area setting we envision a measurement-based situation awareness framework that can combine evidence from sensors deployed in the house, and aim to infer anomalies that signify a coordinated, well-orchestrated attack on residential smart meters at increasing spatial scales. By leveraging multi-view sensor readings such as temperature, motion, power utilization at individual home circuits, etc., our correlative monitoring approach can quickly detect when power shifts to anomalous regimes.

This project also includes a transition-to-practice component. The main effort there will be to engineer a proof-of-concept implementation of a system for home-area health monitoring and detection of bad data attacks. In particular, we are working on deploying our algorithms to inexpensive computing nodes (such as Raspberry Pi’s) that use off-the-shelf sensors to realize our correlative-based identification mechanism. In partnership with NextEnergy, we plan to evaluate our methods in their NextHome environment. We are also working with University of Michigan Utilities and Plant Engineering for access on real-world power data in various spatio-temporal scales. We envision a cloud-based secure environment that one can utilize to study smart-grid wide-area operations in a realistic manner.

This project is funded by the National Science Foundation (NSF) under the Secure and Trustworthy Cyberspace (SaTC) program.

Recent Publications:

Adaptive Statistical Detection of False Data Injection Attacks in Smart Grids
• M. G. Kallitsis, S. Bhattacharya, S. A. Stoev, and G. Michailidis, published at the 2016 IEEE Global Conference on Signal and Information Processing, Washington, DC, December 2016

Correlative Monitoring for Detection of False Data Injection Attacks in Smart Grids (presentation)
• Michael Kallitsis, George Michailidis and Samir Tout, to appear in IEEE SmartGridComm 2015, Miami, Florida, November 2015.

A Toolset for Home-area Network Monitoring (Github repo.)
• Adrian Padin, Yeabsera Kebede, Max Morgan, Davis Vorva, Michael Kallitsis.

Project Partners: University of Michigan, University of Florida, Eastern Michigan University, NextEnergy

Internet Freedom in the Network’s Core 

Without a fundamental advance in censorship circumvention technology, censored users worldwide face a future of steadily diminishing Internet freedom. Today’s major circumvention tools are all becoming less and less effective, because they all share a fundamental weakness of design—in one way or another, they all try to connect censored users with uncensored proxy servers. Tool providers, trying to help censored users find and use these proxy servers before sovereign censors can find and block them, are locked in a losing game of cat and mouse, as censors deploy increasingly sophisticated censorship functionality into the core of their national networks. Evidence of censors’ growing advantage is everywhere: New Tor bridges in China now last less than 48 hours, and in Iran, the regime recently created nation-wide VPN outages ahead of its national elections. The potent new censorship tools that drive these developments are proliferating to a growing list of censoring regimes. New technology capable of disrupting this trend would have a transformative global impact, unlocking the human right to seek, receive,and impart information, and the Internet’s potential to deliver responsive governance and broad economic opportunity for people in need around the world.

Decoy routing can meet this need: it is a scalable and sustainable next-generation approach that offers a fundamental advance over today’s Internet freedom tools. Rather than trying to hide individual proxies from censors, decoy routing locates proxy functionality in the core of the network. This makes censorship much more costly, because it is no longer possible to selectively block servers used to provide Internet freedom. Instead, whole networks outside the censored country provide Internet freedom to users—and any data exchange between a censoring country and a participating friendly network can become a conduit for the free flow of information.

Decoy routing can give censored users the upper hand in the global struggle for Internet freedom—but it will only reach those users if we address the critical gaps identified in this proposal. We have shown that decoy routing works in the lab. This project will prepare decoy routing for real-world deployment.

For up-to-date project status and research contributions, please visit the Refraction Networking portal at

Coalition members: University of Michigan, University of Illinois, Raytheon BBN Technologies, Merit Network, Open Internet Tools Project, Robinson + Yu

Exploring the Possibilities of Future Internets

The Global Environment for Network Innovations (GENI) is a unique virtual laboratory for at-scale networking experimentation. Merit Network’s infrastructure is part of the GENI framework, which enables network researchers to experiment and create new Internets.

The GENI Project will:

• Support at-scale experimentation on shared, heterogeneous, highly instrumented infrastructure;

• Enable deep programmability throughout the network, promoting innovations in network science, security, technologies, services and applications; and

• Provide collaborative and exploratory environments for academia, industry and the public to catalyze groundbreaking discoveries and innovation.

For more information, please see the GENI web site.

Enhancing Education in Michigan

MI Streamnet delivers streaming video to educators in Michigan, and increasingly, across the country. The project was initiated as a means to provide live and on-demand video resources to educators and the public: professional development programming, curriculum content, and coverage of other educationally related government events such as State Board Meetings.

The MI Streamnet project is administrated by the REMC Association of Michigan. REMC centers around Michigan participate by relaying streamed programs to the areas they serve, and some REMC’s originate content as well.

Wayne County Regional Educational Service Agency (RESA), is a member of the statewide REMC organization, and the fiscal agent for REMC MI Streamnet. Local project administration, including web design, server support, and project management, is performed by Wayne RESA Instructional Media and Technology Services staff.

Merit Network hosts the primary and auxiliary relay servers for MI Streamnet, which are connected directly to Merit’s backbone network.

The Michigan Department of Education provides funding and a great deal of content for MI Streamnet.

For more information, please visit the MI Streamnet web site.

Pushing the Boundaries of Ultra-Fast Broadband Networks

US Ignite is an initiative to develop next-generation Internet applications and services for use on virtualized, high-speed broadband networks. Merit Network’s high-speed network is among the networks that compose the infrastructure for the research initiative.

The primary goal of the US Ignite Partnership is to catalyze approximately 60 advanced, next-gen applications in six areas of national priority: education and workforce development, advanced manufacturing, health IT, transportation, public safety, and clean energy. Responsibilities of the Partnership will include connecting, convening, and supporting startups, local and state government, universities, industry leaders, federal agencies, foundations, and community and carrier initiatives in conceptualizing and building new applications. The resulting new applications should have a significant impact on the US economy, including providing a broad range of job and investment opportunities.

The advanced technologies that will power the US Ignite initiative have been developed through the National Science Foundation’s GENI (Global Environment for Network Innovation) program. and by US Ignite’s commercial partners. Flexibility is provided through the use of Software-Defined Networking, which enables greater customization and dynamic resource allocation over networks. Speed is provided by symmetric ultra-fast connections. And “GENI Racks” power the low-latency, programmable local cloud capabilities available to US Ignite applications.

For more information, please see the US Ignite web site.

For over 45 years, Merit has been at the forefront of network research. Merit staff have participated in the development and research of routing standards, network protocols, network topology visualization, and network measurement tools. View Past Research Projects