
Tools and Techniques for the
Analysis of Large Scale BGP

Datasets

Manish Karir, Larry Blunk (Merit)
Dion Blazakis, John Baras (UMd)

The Problem
• Large amounts of data are now, or soon will be

available:
– RouteViews, RIPE Archives, PREDICT, etc

• The problem is no longer access to raw data but how to
extract useful information from the raw data

• Need tools that can:
– Scale to large input datasets
– Provide useful data summarizations
– Are easy to use
– Provide useful information

• BGP::Inspect
– Goal is to attempt to make it easier to use raw data from

archives such as RouteViews, by pre-processing, reformatting
and indexing the data

Outline

• BGP::Inspect and BGPdb
– Architecture, Techniques, Algorithms

• BGP::Inspect Interface
– Basic queries, Global Summarizations
– Detailed specific queries, AS/Prefix

• Case Study 1 – The AS9121 Incident
• Case Study 2 – Prefix Hijacking Example
• Conclusions, Future Work and Discussion

BGP::Inspect
• Analyzing MRT Data:

– Large volumes of data ~RV-66G compressed
– Extracting useful information requires writing custom

parsers even for basic information
– Lots and lots of redundancy

• Approach:
– Preprocess RouteViews data
– Remove redundancy as much as possible
– Use data compression to the extent possible
– Build efficient indices to help queries
– Pre-compute and store commonly used statistics at

data load time not at query time
– Build easy to use interface

BGPdb

• BGPdb is the core of the BGP::Inspect
system

• BGPdb represents the pre-processed
database, which is queried by the
BGP::Inspect interface

• Provides some useful techniques that
maybe applied to processing other large
datasets not just BGP datasets

BGPdb – Techniques and
Algorithms

• Removing redundancy from BGP datasets
– ASPATH, COMMUNITY, UPDATE Msgs are repeated

over and over, only time changes
• Compressed-Chunked Files

– Compromise between size and usability
• B+ Tree indices

– Indexing based on time, this enables fast time-range
queries

• Caching while processing input datasets
– Messages are repetitive, so keep cache of previous

processing for speedup

BGPdb – System Architecture

BGP::Inspect
BGP::Inspect – Beta v0.2
http://weasel.merit.edu:8080

Dataset: Jan1- March31 2005

• Example queries (per peer, 1,7,30 days):
•Most active AS’s
•Most active prefixes
•Prefixes with most OriginAS changes

•Raw Data Analysis(per peer)
•Prefix/AS, Time Range
•Uniques prefixes by AS
•OriginAS changes for a prefix
•Time to run query
•More specific prefixes announced

BGP::Inspect Interface

Global Queries – Most Active ASes

Global Queries: Most OriginAS Changes

Raw Data Analysis – AS Query

Raw Data Analysis – Prefix query

Case Study 1 – AS9121 Incident

• At ~09:19 UTC on Dec
24, 2004, AS9121
began re-originating a
large number of globally
routed prefixes

• Forensics:
– What happened?
– Who did it?
– Could there have been

some early detection?
– How widespread was

it?

Step 1: What…

1 2

3

4

5

Step 1.5: Hmm…interesting…

Dec 22, 23

Dec 24

Step 2: Was I affected?/Should I
care?

Step 3: Where…

Sprint - Yes

Level 3 - No
AOL - Yes

GLBX - No

Step 4: How widespread…

Level 3

AOL

Step 4: How widespread…

Sprint GLBX

Step 5: How long…

022-23

1521-22

22920-21

449619-20

17218-19

5417-18

9216-17

3415-16

15914-15

19613-14

5612-13

80411-12

5610-11

460409-10

008-09

007-08

Unique Prefixes
Announced by 9121

as seen by Sprint

Time

Primary Event

Secondary Event

Case Study 2 – Prefix Hijack Incident

• Incident: On Feb 10th,
AS2586, announces
207.75.135.0/24, which
is part of Merit’s CIDR
block 207.72.0.0/14

• Trouble ticket filed,
bogus announcement
withdrawn by AS2586
by Feb 10th, 19:22hrs

• How do we find out
what happened?

• Could there have been
automated detection?

• What was the impact,
how widespread was it?

1
2

3

4

5

Step 1 – Finding out what happened…

1 2

3

4

5

Step 2 – Who, why…

Step 3 – where…

Level 3

AOL

Sprint

Global X

Conclusions and Future Work
• There is a need to build efficient tools that help extract useful information

from large BGP datasets
• BGP::Inspect is currently available to the network operator and research

communities and feedback is appreciated
• Aside from BGP::Inspect we have presented some basic techniques such

as chunked-compressed files, B+ Tree indexing, data redundancy
elimination, and caching that can be applied by other data mining tools to
help analyze other large datasets as well.

• The goal is not just to provide access to the data, but to try to provider
useful data summaries as well, that can help researchers and network
operators quickly identify potentially “interesting” events. Top20 lists are a
good way to bring potentially interesting things to the attention of people.

• Tools need to be useful before they can be used, and in order to be useful,
feedback from potential users is critical.

• BGP data analysis need not be hard/painful/tedious, that’s what tools are
for!

• Where do we go from here, so we have basic capabilities what about:
– Automated anomaly detection, notification, same tool?, different tool?
– More scalability,? What are the limits?
– What are more useful queries? What book-keeping do we need to track those?

