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Abstract—The overarching objective of the modernized electric
grid, the smart grid, is to integrate two-way communication
technologies across power generation, transmission and dis-
tribution to deliver electricity efficiently, securely and cost-
effectively. However, real-time messaging exposes the entire grid
to security threats ranging from attacks that disable information
exchange between smart meters and data fusion centers to
spurious payload content that would lead to incorrect assessment
of actual demand. Such nefarious activities can compromise
grid stability and efficiency. Hence, it is important to ensure
secure communications and quickly detect malicious activity; this
article proposes a framework for detection of false data injection
attacks in smart grids. We present a measurement-based situation
awareness framework that combines evidence from sensors at
home-area networks, and aims to infer anomalies that signify a
coordinated, well-orchestrated attack on residential smart meters
at increasing spatial scales. By leveraging multi-view sensor
readings, we present a Bayesian-based correlative monitoring
approach that quickly detects power shifts to anomalous regimes.
We evaluate our algorithms using real-world power traces.

I. INTRODUCTION

The electric grid is a “system of systems” that has experi-
enced an expansion of technological capabilities over the last
years [1]. The continuously evolving modern grid, known as
the smart grid, utilizes two-way communication technologies
in an integrated fashion across electricity generation, trans-
mission, distribution and consumption to achieve a system
that is clean, safe, secure, reliable, resilient, efficient, and
sustainable [1], [2]. A key development that is expected to ex-
perience significant growth in the next few years is broad-scale
adoption of demand response schemes, supported by real-
time signaling offered by advanced metering infrastructures
(AMIs) [2]. Employed as a means for balancing supply and
demand, it engages electricity users in an important role in the
operation of the grid by adjusting their electricity usage during
peak periods in response to time-based rates or other forms of
financial incentives [3]. Demand response has been employed
at coarse-time scales for many years; with new advances in
smart metering, dynamic pricing information can be enabled in
finer temporal and spatial scales to reduce consumption during
peak hours and shift demand to off-peak periods.

As gleaned from the above discussion, real-time smart meter
reporting would become an apt technology of the emerging
smart grid and serve different constituencies. AMIs consist
of a hierarchy of communication networks, such as wide-

area, neighborhood and home-area networks, each of which
is vulnerable to malicious acts [4], [5]. Berthier et al. [6]
clustered attack techniques against electric grids into three
main categories. Network compromise attacks could be the
result of traffic modification, injection and replay [7], [8].
Further, a system compromise attack would trigger illegitimate
network operations (e.g., sudden and unwanted power gener-
ation commands) by spoofing utility system nodes. Similarly,
lower smart meter integrity could be the result of compromised
nodes1 or erroneous smart metering [7], [8], [10]–[13]. In
addition, with denial of service (DoS) attacks unresponsive
nodes could cause grid instability by leading to a faulty
or stale system state. DoS attacks could be fabricated via
resource exhaustion, wireless signal jamming, TCP injection,
and others [7], [10], [11], [14].

Based on this vast array of security threats, one can envision
different attack combinations that could result in smart meter
payload spoofing and alteration of true power demand, which
constitutes the primary threat model of our paper. Intercepted
signaling between AMIs deployed at customer premises and
data concentrators in neighborhood-area networks comprises
the attack surface. False data injection attacks can mislead
the grid’s state estimation process when carefully crafted to
avoid existing “bad data” detection techniques [13]. Numerous
scenarios of adversaries who compromise meters and fabricate
their readings are discussed in [15]–[18], including malware
coordinating instantaneous demand drop, hacked data collector
nodes programmed to send messages that reduce and then
suddenly dramatically increase power demand, manipulation
of electricity pricing, etc.

This paper proposes a framework for tackling the problem
of detecting false data injection attacks. Motivated by recent
advances in home and building monitoring (e.g., see [19], [20]
and energy-harvesting metering [21]) we study a behavioral-
based model that integrates sensor measurements from home-
area networks and aims to “learn” normal electricity usage
patterns2. Given the power state (i.e., the one reported by the
smart-meter to the utility) and our forecasted usage, one can
formulate a sequential hypothesis testing problem that reflects
whether the system remains “in-control” or it is operating at

1Perhaps the most famous incident of this type is Stuxnet [9].
2Considering user privacy [22], such information is not sent to the utility.



Fig. 1: Our detection framework in action on Smart∗ data [19].
As the alert dashboard shows (see Figure 2, right) all injection
attacks are identified (see red vertical stripes).

anomalous regimes (see Figure 1). In addition, the proposed
system can be employed as a home-health monitoring system
that could identify intrinsic anomalies that originate from
malware infecting smart appliances, energy theft or other
failures in Internet of Things devices [22].

Our main contributions include: i) the formulation of false
data detection as an anomaly detection problem based on
correlative home-area monitoring, complementing signature
and specification-based methods (see next section); ii) a sys-
tematic, modular approach based on integrating sensor mea-
surements and fusing them into a forecasting and hypothesis
testing framework. For example, alternative forecasting mod-
ules could be employed, mutatis mutandis, assuming they offer
a predictive distribution (e.g., Gaussian processes regression)
and computational restrictions are not in play; iii) a light-
weight (see computing times in Figure 2), elegant and adaptive
solution to the problem at hand that can be easily transitioned
to practice and implemented using inexpensive sensor devices
(see, e.g., [19], [21]) and computing nodes.

The rest of the paper is organized as follows. Section II gives
an overview of related work in anomaly detection for power
grids. Our Bayesian-based framework is introduced in III,
followed by performance evaluation with real-world datasets.

II. RELATED WORK

Discovery of nefarious activities in the electric grid
can be performed using a combination of signature-based,
specification-based and anomaly-based detection methods [4],
[6], [7]. The first is suitable for identifying malware that
has already appeared in a smart grid environment, and its
behavior has been recorded in black-list databases with known
malware signatures. It examines packets as they arrive to the
utility’s control center and looks for patterns of malicious
activity (e.g., Snort [23]). Specification-based detection is
accomplished by measuring deviations from a normal oper-
ational profile that is predefined. Examples include finite state
machine monitors, data validation with range checks, authen-

tication monitor and physical health inquiries for catching
unresponsive nodes, and verification of system state [24], [25].

One shortcoming of relying on prior knowledge recorded in
black-lists is that new malware activities will not be uncovered.
Similarly, specification-based methods can be cumbersome to
fine-tune; finding a valid range for the AMI power demand and
supply is not easily determined. Further, subtle attacks might
exist that involve modifying control parameters in a way that
appears to be within a normal range, but still being capable
of inflicting system damage. Instead, anomaly-based methods
try to identify anomalies by checking for significant deviations
from normal traffic patterns; epigrammatically, one monitors
the signal of interest to “learn” its normal behavior through a
training period, and detects outliers when a statistic exceeds
a predefined threshold. Our framework falls in this category;
via a model-based probabilistic technique, we build the normal
operating regime and seek for outliers.

Existing anomaly-based defenses against adversaries that
inject spurious data measurements into the power grid fol-
low a “network-view” perspective. Such countermeasures for
detecting false data injection appear in [18], [26]–[28]. [26]
proposes an adaptive cumulative sum test combined with a
multivariate hypothesis testing problem to prevent an erro-
neous grid-state estimate. [27] studies a graph theoretic method
for securing an optimal set of meter measurements so that
state estimation is not compromised. [18] couples anomaly-
based methods with a data integrity check to combat stealth
attacks, while [28] looks for inconsistent grid behavior using
clustering techniques. Instead, we tackle the problem from
a different vantage point. The “home-area view” we suggest
aims to detect arbitrary data injection attempts at their origin,
i.e., compromised residential smart meters. Our framework
complements the above-mentioned work since the alert output
signal generated by our methods could serve as an additional
input3 to [18], [26]–[28].

III. PROPOSED FRAMEWORK

The data injection threat highlighted above can be tackled
through the lens of a decision problem on non-stationary
time-series measurements. We present an adaptive system for
home-area situation awareness. Our system employs sensor
measurements that can be readily collected in home-area
networks (e.g., motion, temperature, appliance usage, total
electricity; see [19], [20]) to train a model that keeps track of
the expected electricity pattern. Deviations between predicted
versus realized power consumption are fed to a sequential
hypothesis testing module that decides on the presence of
abnormalities. Framework 1 provides a sketch of the proposed
approach.

We first introduce the forecasting module and continue
with the hypothesis testing one. We base our predictions on
Bayesian linear regression. By following a self-tuned Bayesian
approach, we avoid the need for model regularization and
cross-validation that can be computationally expensive when

3These signals should be integrity protected by encryption schemes.



Framework 1 Measurement-based False Data Detection
Require: For each forecasting period: new training set X and t.
Require: Control chart parameters λ and L.
Require: Robust threshold θr and period ν.
1: [Start] Fit the model and begin data monitoring.
2: [Forecast] Upon observing (tn,xn), compute y(xn,w).
3: [Update] Compute error en = tn − y(xn,w).
4: [Control Chart] Compute Sn = f(λ, L, en).
5: [Robust EWMA] Apply two-in-a-row rule on Sn (see section III-B).
6: [Robust Filter] Update A = {k : |Sk| > Lσλ, k = n− ν, . . . , n}.
7: [Decision] Raise alarm if |A| > θr , else system is in-control.

online monitoring is required. Further, a linear model is well-
suited when individual power circuits and appliances are
monitored, as in our case. However, the system designer is not
restricted to these choices, and alternative prediction models
can be considered. Similarly, one can opt for a different
decision module. We decided to work with an exponentially
weighted moving average control chart due to its simplicity
and robustness, but other stopping rules also apply (e.g., see
Wald-based detection [29]).

A. Forecasting Power Utilization

We provide a basic overview of Bayesian regression, and the
reader is referred to [30] for extended discussion. Throughout
the paper, the smart meter power state is denoted as t and
sensor observations are denoted by vector x = (x1, . . . , xM )T .
In other words, variables t would play the role of target values
in our prediction scheme, and input x would be the vector
of independent variables known as features. For each new
forecasting epoch (see Framework 1), a training set of size
N is available; t := (t1, . . . , tN )T represents the target values
in the training set, and {x1, . . . ,xN} are the corresponding
target values. We construct the N ×M measurement matrix
X by stacking the input variables of each data point. Our linear
regression model involves a linear combination of inputs, i.e.,
y(x,w) = wTx, where w are the parameters/weights that
need to be determined. We further assume that given the value
of x, the corresponding value of t has a Gaussian distribution
with mean equal to y(x,w) and variance β−1. Thus,

p(t|x,w, β) = N (t|y(x,w), β−1). (1)

Assuming the data is drawn independently from (1), the
likelihood is p(t|X,w, β) =

∏N
n=1N (tn|y(xn,w), β−1).

In a Bayesian setting, a prior of the model parameters w
is introduced. We consider a conjugate prior, zero mean
isotropic Gaussian governed by a single parameter α, i.e.,
p(w|α) = N (0, α−1I), where I is the identity matrix of
appropriate dimension. The posterior distribution, which is
proportional to the product of the likelihood function and the
prior, takes the form of another Gaussian distribution

p(w|t) = N (w|mN , SN ), (2)

with mN = βSNXT t and S−1N = αI + βXTX. The optimal
parameter vector w∗ in y(x,w) is obtained by maximizing the
posterior distribution. Since this is a Gaussian distribution, its
mode coincides with the mean, and thus the maximizing vector
is w∗ = mN .

Further, our framework requires knowledge of the pre-
dictive distribution. For a new data point (t,x) (we omit
time indexing to keep notation uncluttered) this is defined
by p(t|x, t, α, β) =

∫
p(t|x,w, β)p(w|t, α, β)dw. The con-

ditional distribution p(t|x,w, β) is given by (1) and the
weight posterior distribution is given by (2). The predictive
distribution is hence the result of the convolution of two
Gaussians [30], and takes the form

p(t|x, t, α, β) = N (t|mT
Nx, σ2

N (x)), (3)

where the variance of the predictive distribution is given by
σ2
N (x) = β−1+xTSNx. The first term represents the noise in

the data, and the second term reflects the uncertainty in making
predictions associated with the parameter vector w∗. Thus,
our model is adaptively learning the variance of the predictive
distribution, something that would be proven very important
for tracking the “reference distribution” in our hypothesis
testing module, described shortly.

So far we have assumed that hyperparameters α and β
are known. In a fully Bayesian treatment, one introduces
prior distributions for them. Predictions are then made by
marginalizing with respect to these hyperparameters as well
as with respect to parameters w. Instead of performing a
complete marginalization over all these variables (which is
analytically intractable for some choices of prior hyperparam-
eters, can be computationally intensive if done numerically or
can lead to poor results [30]) we follow a technique called
evidence approximation [30], [31]. Using this approximation,
the hyperparameters are determined by just looking at the
training data. The technique amounts to an iterative approach,
similar in spirit to Expectation-Maximization algorithms. In
the evidence approximation, the values of α and β are ob-
tained by maximizing the marginal likelihood p(t|α, β) =∫
p(t|w, β)p(w|α)dw, that represents the “evidence” for a

particular choice of the hyperparameters given the observed
data. The iterative procedure starts with initial values of α
and β and uses them to compute mN . It then derives the
eigenvalues λi of the eigenvector equation

(βXTX)ui = λiui, for i = 1, . . . ,M. (4)

Then quantity γ is computed as γ =
∑M
i=1

λi
α+λi

, which is
used to obtain the updated value of α that maximizes the
marginal likelihood

α =
γ

mT
NmN

. (5)

Following similar steps, one can maximize the marginal like-
lihood with respect to β as well, and obtain a new value for
β as

1

β
=

1

N − γ

N∑
n=1

{tn −mT
Nxn}2. (6)

The iterative cycle of finding mN , γ and using them to update
α, β repeats until α and β reach a stationary point.



B. Online Detection: Hypothesis Testing

The forecasting module provides predictions about elec-
tricity usage based on house sensor measurements. The next
step computes the difference of the predicted value with
the actual smart meter reading, and formulates a sequential
hypothesis testing problem to decide whether the sequence of
values observed comes from a system operating at the normal
regime (i.e., values obey the Null Hypothesis or, equivalently,
reference distribution).

The reference distribution, denoted as Fn, for the differences
(referred as errors henceforth) comes from the predictive
distribution described earlier. Following [32], for each new
observation (tn,xn) we calculate the error en := tn−mT

Nxn,
and then find the p value corresponding to that error using the
fact that

p(en|xn, t, α, β) = N (en|0, σ2
N (xn)). (7)

The p value pn for negative errors en with reference
distribution Fn is set to be the lower-tail probability, Fn(en).
If the error is positive, then pn = 1 − Fn(en). We are inter-
ested in employing a hypothesis testing criterion for detecting
sequences of “abnormally” small p values. We monitor for
anomalies by utilizing an Exponentially Weighted Moving
Average (EWMA) control scheme [33], known as Q-charting
in quality control. We first take the normal score Φ−1(pt) of
the p value, where Φ−1 is the standard normal cumulative dis-
tribution inverse function. This allows application of standard
control chart methods for detecting “out-of-control” values.

In short, event detection is based on thresholding

Sn = (1− λ)Sn−1 + λZn, where Zn = Φ−1(pn),

for a weight λ in (0, 1]. Both the magnitude and duration
of the anomalous event can drive the value of Sn to a
level where an alert is triggered. For example, abrupt power
shifts (e.g., elevating power by 6KW, see Table I) would
be almost instantaneously detected with high probability. On
the other hand, “stealthy” power shifts (e.g., 1KW) could be
unnoticeable for awhile, but as their duration persists detection
probability elevates.

The sensitivity of EWMA is tuned by the weight λ and
the threshold parameter L. When the process is under control
and the reference distribution is suitable, Zn is distributed ap-
proximately as normal N (0, 1). Assuming independent Zn’s,
the severity test Sn is approximately normal N (0, σ2

λ) with
σ2
λ = λ/(2 − λ). [33] provides guidelines on calibrating the

control chart by choosing appropriate values of λ and L that
balance the time between false alarms (named as average
run-length in [33]) and the ability to determine whether the
process under control has “shifted” to anomalous regimes of
certain magnitude. Extensive experimentation suggests that
(λ, L) pairs (.53, 3.714), (.84, 3.719), (1, 3.719) are sensible
options for monitoring real-world data (see Table I).

To tame the false alarm rate we engage a robust EWMA
technique by exercising the two-in-a-row rule [33]. When
a single outlier is observed, i.e., |Sn| > σλL, the control

statistic Sn remains unchanged and a counter is set. If the next
observation (the new normal score) makes the updated control
statistic to lie within the outlier limits, the counter resets;
otherwise, an out-of-control signal is given. The final step of
our framework is the robust filter, and checks for persistent
out-of-control signals. As Framework 1 depicts, we keep a
history window of ν observations and maintain a counter of
the out-of-control signals seen in that window. An alert is
raised whenever the counter exceeds the user-defined threshold
θr. The severity of alert level can be visualized with a lively
updated dashboard, as illustrated in Figure 2 (right panel).

IV. PERFORMANCE EVALUATION

We evaluate our framework using the Smart∗ (SmartStar)
dataset [19], and data from a colleagues’s residence (with
added, synthetic noise). The Smart∗ projects provides real-
world fine granularity power data from several households;
we use “Home A”. Aggregate power along with the power of
each individual circuit in the house (25 in total) are recorded.
In addition, measurements from several switches, meters,
environmental factors (e.g., indoor/outdoor temperature, etc.),
motion and others are available. Overall, we use 26 features as
independent inputs for prediction, taken at 1-minute snapshots.

Figure 2 (left) evaluates the prediction accuracy and com-
putational performance of our forecasting algorithm. Com-
putationally expensive operations include the matrix inver-
sion, the singular value decomposition (both entail a O(M3)
complexity), and the matrix multiplication of order O(NM2)
needed to fit the regression model (i.e., training phase, see
Eqs. (2) and (4)). As Figure 2 illustrates though, training
time is of the order of milliseconds, and predictions take
negligible time. We also compute and show the relative mean
squared error (ReMSE). ReMSE is defined as, ReMSE =∑
n(y(xn,w) − tn)2/

∑
n t

2
n, for all n in the forecasting

period. We demonstrate performance for various sizes of
training and forecasting intervals (note that re-training is
needed after the end of each forecasting interval). As expected,
training times monotonically increase linearly (left panel of
Figure 2) as the dimension N of matrix X increases (in
our case, M � N ). Figure 2 (left) suggests that good
prediction accuracy is achieved by balancing the number of
observations N (training size) with the forecasting period.
Extensive experimentation advocates training sizes ranging
from 24 to 96hrs worth of measurements and a look-ahead
forecasting period of 30 to 60 time points.

Table I tabulates results on detection accuracy. We focus
on four different scenarios in which power is altered from
its true value by the corresponding shift value (in KWs). For
each scenario, we inject five anomalies at random times with
duration of 30 observation intervals, and we repeat the given
experiment for a total of 50 runs. For example, Figure 1 (lower
panel) shows five anomalies occurring at the time instances
with red vertical stripes. It also displays time-series of errors
(upper panel) and predictions aside the actual targets for three
months (middle). We mitigate false positives with a robust
filter of length ν = 10 minutes and θr = 3, as shown



in Figure 2 that depicts a dashboard-like visualization that
can be lively updated. We report results on the mean delay
elapsing before EWMA notices the first out-of-control point
after a data injection, and on the precision and recall of the
events classification. Let Tp, Fp and Fn denote the number of
true positives, false positives and false negatives, respectively.
Precision is defined as the ratio Tp/(Tp + Fp), recall as
Tp/(Tp + Fn) and both lie in [0, 1]. We also include the
F1-score, the harmonic mean thereof. Briefly, a hypothesis
test that is too sensitive gives a higher number of false alarms
and this would lower the detection precision. On the contrary,
a test that misses anomalies (i.e., false negatives) will have
a low recall score. We tabulate results on 3 pairs of EWMA
parameters λ and L.

It is intuitively appealing that accuracy (as reflected by
precision, recall and detection delay) elevates as the power
shift increases. Indeed, to defend against false data injection
attacks, these sudden power spikes should be rapidly diag-
nosed. In addition, Figure 2 (middle panel) confirms that the
model chosen for the reference distribution is adequate. The
figure shows the distribution of the p values under the Null
hypothesis. When the system is in control, the p values of the
reference distribution (see Eq. (7)) are uniformly distributed.
This visualization serves as a model validation for the user,
and the system can be restarted or stopped for re-calibration
when the distribution of p values deviates from uniformity.

Next, we check identification accuracy on stealth data
injections (i.e., spurious data of low intensity). Even though
sporadic, low magnitude injections are unlikely to threaten
grid stability (they fall within the normal load tolerance of
the grid [34]; instead, detecting dramatic shifts is the primary
concern), we delve more into it. Table II sheds more light
on performance for power shifts around 10% of the peak
demand (“Home A” of [19] peaks around 10KW). As shown,
for the selected (.53, 3.714) EWMA parameters, probability of
exposure increases as the duration of attack persists. We notice,
however, that some small injections may remain undetected
and false positives may surface. Although this needs further
examination as part of ongoing work, we conjecture that the
network-wide detection accuracy would not be compromised.
We believe that at a data concentrator center that collectively
monitors alerts generated by our system, false positives would
be uniformly spread in time and would not trigger a
network-wide alert. On the contrary, coordinated attacks
(stealth or intense injections) would be correctly identified.

Further, we performed experiments on simulated data; i.e.,
data for which the linear relationship between independent
inputs and the target variable actually exists, given the value
of an additive Gaussian noise (zero mean, standard deviation
300W). Results for EWMA pairs (.29, 3.686) and (.53, 3.714)
are tabulated in Table III. The high recall and precision scores
clearly emphasize that under the correct model assumptions,
our framework is highly suitable for the problem at hand.

Finally, we employed the naı̈ve approach of an EWMA-
based change-point detection by just looking at the target
electricity values. This method is severely inaccurate due to a

TABLE I: Evaluation of detection performance on the Smart∗

dataset. Values in parenthesis signify standard deviations.

Shift
(KW)

Weight
λ

Delay
(in mins) Precision Recall F1-score

−1 1 9.7(7.2) .29(.45) .07(.11) .11
−1 .53 8.1(4.6) .76(.41) .29(.21) .42
−1 .84 10.4(5.5) .48(.50) .12(.14) .19

1 1 8.0(4.5) .75(.43) .26(.19) .38
1 .53 3.4(1.7) .95(.17) .50(.22) .66
1 .84 6.6(3.4) .86(.31) .31(.19) .46

3 1 1.1(.5) .98(.05) 1.00(.03) .99
3 .53 1.0(.0) .98(.06) 1.00(.03) .99
3 .84 1.0(.2) .98(.06) 1.00(.03) .99

6 1 1.2(.9) .96(.11) .99(.05) .97
6 .53 1.0(.0) .97(.08) 1.00(.05) .98
6 .84 1.0(0.0) .96(.09) .99(.05) .98

TABLE II: Detection performance on stealth injections.

Duration
(in mins)

Shift
(KW)

Weight
λ

Delay
(in mins) Precision Recall

10 1 .53 2.7(0.7) .05(.11) .03(.07)
20 1 .53 2.9(1.0) .61(.19) .40(.20)
30 1 .53 3.8(1.8) .65(.20) .49(.23)
40 1 .53 3.8(1.8) .70(.09) .52(.19)
50 1 .53 4.0(2.2) .73(.14) .61(.23)
60 1 .53 4.2(2.5) .72(.09) .58(.21)
120 1 .53 4.8(4.7) .74(.09) .60(.20)

plethora of false positive alerts (around 4 false alarms every
100 observations).

V. DISCUSSION

Electric grids are verging on large technological changes
due to the introduction of modern devices with two-way
communication capabilities. Hence, it is important to ensure
secure communications together with developing the necessary
infrastructure to timely detect nefarious activities. A major
security threat is false data injection attacks. Previous work
tackles the problem from a network-view perspective (i.e.,
looking at data from multiple grid nodes). Here, we consider a
different vantage point and aim at detecting attacks directly at
their origin; the home-area level. We follow a measurement-
based approach, and use data collected from sensors deployed
in a home network to learn and be able to forecast electricity
consumption. Large deviations from expected consumption are
flagged anomalies by our online Q-chart scheme.

We use a light-weight algorithm for forecasting, such as
Bayesian linear regression, but our framework can be extended
with more elaborate models. One could employ non-linear
regression (e.g., Gaussian processes, neural networks) if non-
linearities between the input variables and the targets exist.
In addition to spoofing detection, our system offers a health-
assessment for other threats, such as energy theft or other
power leaks. We believe that the proposed approach can work
in harmony with signature-based anomaly detection methods,
and can offer a complementary “grid health” signal to existing
methods that take a network-view approach.
Acknowledgements: We thank Meghan Clark and Prabal



Training window size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
la

ti
v
e
 M

S
E

forecast horizon=5
forecast horizon=30
forecast horizon=60

0 20 40 60 80 100
Training window size

0

50

100

150

200

250

300

350

T
ra

in
in

g
 t

im
e
 (

m
se

c)

(a) Forecasting Evaluation.

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

P
-v

a
lu

e
 d

is
tr

ib
u
ti

o
n

(b) Model Validation.

2012-05-05 2012-05-11 2012-05-17 2012-05-22
0

2

4

6

8

10

A
le

rt
 D

a
sh

b
o
a
rd

robust filter

(c) Alert Dashboard.

Fig. 2: (a) Evaluation of forecasting with different training sizes (in hrs). For these experiments, the average prediction time /
iteration was 23.8µsec with standard deviation of 1.8µsec. Experiments were run on a 3.07GHz CPU. (b) Model validation:
histogram of p values under the Null. (c) Detection performance on 4 weeks of Smart∗ dataset (see Fig. 1). Injected anomalies
shown with red vertical stripes (as on Fig. 1). As shown in the right panel, all power shifts of 3KW were detected.

TABLE III: Detection performance on simulated data.

Duration
(in obs)

Shift
(KW)

Weight
λ

Delay
(in obs) Precision Recall

10 1 .29 1.3(.2) 1.00(.00) .98(.06)
1 .53 1.2(.5) 1.00(.00) .82(.19)
3 .29 0.0(.0) 1.00(.00) 1.00(.00)
3 .53 0.0(.0) 1.00(.00) 1.00(.00)

Dutta at Lab11, UM for valuable discussions. Work supported
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