Correlative Monitoring for Detection of False Data Injection Attacks in Smart Grids

Michael Kallitsis (mgkallit@merit.edu) joint with George Michailidis, Samir Tout

IEEE SmartGridComm 2015, Miami, Florida

merit UF UNIVERSITY of FLORIDA

Introduction - Problem Motivation

False Data Injection: a malicious actor injects "bad data" into the payload of a smart meter

False Data Injection

Consequences

- Destabilize grid (deteriorates grid's estimation process)
- * Endanger demand response schemes
- Compromise operation of intelligent buildings
- * Energy theft and price manipulation
- Threat Model Attack scenarios
 - * Malware coordinating instantaneous demand drop
 - * Nodes programmed to reduce and suddenly increase power demand

Smart Meter Vulnerabilities

 Rapid deployment of smart meters entails installing low-cost commodity embedded devices in physically insecure locations with a lengthy operational lifetime (several decades)

Attacks on Embedded Systems

- Stuxnet worm: damaging physical infrastructure
- * DDoS report from Arbor Networks: most attacks spawned by embedded systems (e.g., home routers)
- Carna botnet: Internet census from compromised home routers!

Related Work in Smart Grid Anomaly Detection

- Signature-based Methods (e.g., Snort, Bro)
 - * Needs signatures, could miss polymorphic malware
- Specification-based Detection
 - * Data validation, range checks: can be cumbersome to fine-tune
- **Behavioral-based Techniques** *
 - Statistical based: classification/clustering
 - **State Space techniques**
 - **Graphical based**

Game theory methods (price manipulation)

Network-view perspective

- * Home Area Network (HAN)
 - Smart meter & appliances
 - * Lightweight communication protocols (WiFi or ZWave)
- * Neighborhood Area Network (NAN)
 - * Aggregates data from HAN meters
 - * Long-range wireless communications (e.g., cellular)
- Wide Area Network (WAN) *
 - * Connects the utility to NANs and data concentrators

AMI Architecture — Bottom-Up Approach

Introduction - Problem Motivation Correlative Monitoring Approach

HAN Monitoring - Modular Approach

Data Collection

Forecasting

Hypothesis Testing

Dashboard / App

Correlative Monitoring Approach - Data Collection

- * Data-driven methodology
- * Associate AMI energy consumption with data from sensors
- **Examples: motion, temperature, circuit** * information, characteristics of home appliances
- ***** Off-the-shelf sensors for home automation

HAN Monitoring - Modular Approach

Data Collection

Forecasting

Hypothesis Testing

Dashboard / App

Correlative Monitoring - Forecasting Module

target variable (t) Total Electricity

Motion

Hot Water

Indoor Temperature

- **Build predictive model that forecasts energy consumption in the next time period(s)** * based on past consumption (over a trailing window) and other sensor readings * Various choices: linear, kernel, GP regression, support vector regression

Upon observing $(t_n,$

$$\mathbf{x}_n$$
), compute $y(\mathbf{x}_n, \mathbf{w})$

- **Build predictive model** that forecasts energy consumption in the next time period(s) based on past consumption (over a trailing window) and other sensor readings * Various choices: linear, kernel, GP regression, support vector regression **Obtain forecasting error: (prediction - actual reading)**

Compute error $e_n = t_n - y(\mathbf{x}_n, \mathbf{w})$

HAN Monitoring - Modular Approach

Hypothesis Testing

Data Collection

Forecasting

Dashboard / App

- Build predictive model that forecasts energy consumption in the next time period(s) based on past consumption (over a trailing window) and other sensor readings
 - * Various choices: linear, kernel, GP regression, support vector regression
- * Obtain forecasting error: (prediction actual reading)
- * Use predictive distribution to calculate the tail (p-value) of the error

$$p(e_n | \mathbf{x}_n, \mathbf{t}, \alpha, \beta) = \mathcal{N}(e_n | \mathbf{0}, \sigma_N^2(\mathbf{x}_n))$$

- Build predictive model that forecasts energy consumption in the next time period(s) based on past consumption (over a trailing window) and other sensor readings
 - * Various choices: linear, kernel, GP regression, support vector regression
- Obtain forecasting error: (prediction actual reading)
- * Use Exponentially Weighted Moving Average charts to identify out-of-control

- Build predictive model that forecasts energy consumption in the next time period(s) based on past consumption (over a trailing window) and other sensor readings
 - * Various choices: linear, kernel, GP regression, support vector regression
- * Obtain forecasting error: (prediction actual reading)
- * Use Exponentially Weighted Moving Average charts to identify out-of-control:
 - * forecasting errors
 - Or their p-values, if reference distribution exists for normal operations (see Lambert and Liu, JASA, 2006)
 - Extensive literature on selecting adaptive thresholds and memory parameters for the EWMA chart (book by Qiu, 2014)
 - Employ the two-in-a-row rule to robustly the out-of-control calls (Lucas and Santucci, Technometrics, 1993)

Introduction - Problem Motivation Correlative Monitoring Approach Performance Evaluation

Evaluation: Smart* dataset

- * Measurement period: May July 2012
- **Granularity of 1-minute** **
- * Training window size: 24 hours
- * Forecasting period: 30, 60 minutes
- * Inject random data attacks

TABLE I: Evaluation of detection performance on the Sma dataset. Values in parenthesis signify standard deviations.								
Shift (KW)	Weight λ	Delay (in mins)	Precision	Recall	F1-score			
-1	1	$9.7_{(7.2)}$	$.29_{(.45)}$	$.07_{(.11)}$.11			
-1	.53	$8.1_{(4.6)}$	$.76_{(.41)}$	$.29_{(.21)}$.42			
-1	.84	$10.4_{(5.5)}$.48(.50)	.12(.14)	.19			
1	1	$8.0_{(4.5)}$	$.75_{(.43)}$	$.26_{(.19)}$.38			
1	.53	$3.4_{(1.7)}$	$.95_{(.17)}$	$.50_{(.22)}$.66			
1	.84	$6.6_{(3.4)}$	$.86_{(.31)}$	$.31_{(.19)}$.46			
3	1	$1.1_{(.5)}$	$.98_{(.05)}$	$1.00_{(.03)}$.99			
3	.53	1.0(.0)	$.98_{(.06)}$	$1.00_{(.03)}$.99			
3	.84	1.0(.2)	$.98_{(.06)}$	1.00(.03)	.99			
6	1	$1.2_{(.9)}$	$.96_{(.11)}$	$.99_{(.05)}$.97			
6	.53	$1.0_{(.0)}$	$.97_{(.08)}$	$1.00_{(.05)}$.98			
6	.84	$1.0_{(0.0)}$	$.96_{(.09)}$.99(.05)	.98			

(KW)	λ	(in mins)	Precision	Recall	F1-score
-1	1	$9.7_{(7.2)}$	$.29_{(.45)}$	$.07_{(.11)}$.11
-1	.53	$8.1_{(4.6)}$	$.76_{(.41)}$	$.29_{(.21)}$.42
-1	.84	$10.4_{(5.5)}$	$.48_{(.50)}$	$.12_{(.14)}$.19
1	1	$8.0_{(4.5)}$	$.75_{(.43)}$	$.26_{(.19)}$.38
1	.53	$3.4_{(1.7)}$	$.95_{(.17)}$	$.50_{(.22)}$.66
1	.84	6.6(3.4)	.86(.31)	$.31_{(.19)}$.46
3	1	$1.1_{(.5)}$	$.98_{(.05)}$	$1.00_{(.03)}$.99
3	.53	1.0(.0)	$.98_{(.06)}$	$1.00_{(.03)}$.99
3	.84	1.0(.2)	$.98_{(.06)}$	$1.00_{(.03)}$.99
6	1	$1.2_{(.9)}$	$.96_{(.11)}$	$.99_{(.05)}$.97
6	.53	$1.0_{(.0)}$	$.97_{(.08)}$	$1.00_{(.05)}$.98
6	.84	$1.0_{(0.0)}$	$.96_{(.09)}$	$.99_{(.05)}$.98

art*

Shift (KW)	Weight λ	Delay (in mins)	Precision	Recall	F1-score
-1	1	$9.7_{(7.2)}$	$.29_{(.45)}$	$.07_{(.11)}$.11
-1	.53	$8.1_{(4.6)}$	$.76_{(.41)}$	$.29_{(.21)}$.42
-1	.84	$10.4_{(5.5)}$.48(.50)	.12(.14)	.19
1	1	$8.0_{(4.5)}$	$.75_{(.43)}$	$.26_{(.19)}$.38
1	.53	$3.4_{(1.7)}$	$.95_{(.17)}$	$.50_{(.22)}$.66
1	.84	6.6(3.4)	.86(.31)	.31(.19)	.46
3	1	$1.1_{(.5)}$	$.98_{(.05)}$	$1.00_{(.03)}$.99
3	.53	1.0(.0)	$.98_{(.06)}$	$1.00_{(.03)}$.99
3	.84	1.0(.2)	.98(.06)	1.00(.03)	.99
6	1	$1.2_{(.9)}$	$.96_{(.11)}$	$.99_{(.05)}$.97
6	.53	1.0(.0)	$.97_{(.08)}$	$1.00_{(.05)}$.98
6	.84	$1.0_{(0.0)}$	$.96_{(.09)}$	$.99_{(.05)}$.98

TABLE I: Evaluation of detection performance on the Smart* dataset. Values in parenthesis signify standard deviations.

Summary & Future Directions

- Correlative monitoring in HANs, bottom-up approach
- * Proof-of-concept implementation with Raspberry Pi's and Z-Wave sensors - partnership with NextEnergy!
- Incorporate energy harvesting sensing!
- * Acknowledgements: Joe Adams, Yeabsera Kebede, Max Morgan, Davis Vorva (UM/Merit), Atman Fozdar (EMU), Wayne Snyder (NextEnergy)
- Supported by NSF SATC CNS-1422078 \mathbf{x}

"If we have data, let's look at data. If all we have are opinions, let's go with mine."

-Jim Barksdale, former Netscape CEO

Supplementary Material

Bayesian Linear Regression

- selection
- Provides a predictive distribution
 - functions non-linearity may not be an issue

Avoid the need for cross-validation and model

* Linear: good choice when data from HAN circuits are available. In addition, with appropriate basis

Framework 1 Measurement-based False Data Detection

Require: For each forecasting period: new training set X and t. **Require:** Control chart parameters λ and L. **Require:** Robust threshold θ_r and period ν . 1: [Start] Fit the model and begin data monitoring. 2: [Forecast] Upon observing (t_n, \mathbf{x}_n) , compute $y(\mathbf{x}_n, \mathbf{w})$. 3: [Update] Compute error $e_n = t_n - y(\mathbf{x}_n, \mathbf{w})$. 4: [Control Chart] Compute $S_n = f(\lambda, L, e_n)$. 5: [Robust EWMA] Apply two-in-a-row rule on S_n (see section III-B). 6: [Robust Filter] Update $A = \{k : |S_k| > L\sigma_{\lambda}, k = n - \nu, \ldots, n\}.$ 7: [Decision] Raise alarm if $|A| > \theta_r$, else system is in-control.

DTE Energy Bridge - App access to meter

Precision & Recall

