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False Data Injection: a malicious actor injects 
“bad data” into the payload of a smart meter 



False Data Injection
❖ Consequences 

❖ Destabilize grid (deteriorates grid’s estimation process) 
❖ Endanger demand response schemes 
❖ Compromise operation of intelligent buildings 
❖ Energy theft and price manipulation  

❖ Threat Model — Attack scenarios 
❖ Malware coordinating instantaneous demand drop 
❖ Nodes programmed to reduce and suddenly increase power demand



Smart Meter Vulnerabilities

❖ Rapid deployment of smart meters entails 
installing low-cost commodity embedded 
devices in physically insecure locations with a 
lengthy operational lifetime (several decades)



Attacks on Embedded Systems 

❖ Stuxnet worm: damaging physical 
infrastructure 

❖ DDoS report from Arbor 
Networks: most attacks spawned 
by embedded systems (e.g., 
home routers) 

❖ Carna botnet: Internet census 
from compromised home routers! 



Related Work in Smart Grid Anomaly Detection

❖ Signature-based Methods (e.g., Snort, Bro) 
❖ Needs signatures, could miss polymorphic malware 

❖ Specification-based Detection 
❖ Data validation, range checks: can be cumbersome to fine-tune 

❖ Behavioral-based Techniques 
❖ Statistical based: classification/clustering 
❖ State Space techniques 
❖ Graphical based 
❖ Game theory methods (price manipulation)

Network-view 
perspective



AMI architecture 

• Home Area Network 
– Smart meter and appliances 
– Lightweight communication 

protocols (e.g. ZigBee) 
• Neighborhood Area 

Network 
– Aggregates data from 

neighborhood’s smart meters 
– Wifi or 3G/4G communications 

• Wide Area network 
– Connects the utility to NANs 

and data concentrators 
– High bandwidth 

communication protocols  

AMI Architecture — Bottom-Up Approach
❖ Home Area Network (HAN)

❖ Smart meter & appliances

❖ Lightweight communication protocols    
(WiFi or ZWave)

❖ Neighborhood Area Network (NAN)

❖ Aggregates data from HAN meters

❖ Long-range wireless communications (e.g., 
cellular)

❖ Wide Area Network (WAN)

❖ Connects the utility to NANs and data 
concentrators
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HAN Monitoring - Modular Approach

Data Collection

Forecasting

Hypothesis Testing

Dashboard / App



Correlative Monitoring Approach - Data Collection

❖ Data-driven methodology

❖ Associate AMI energy consumption with 
data from sensors

❖ Examples: motion, temperature, circuit 
information, characteristics of home 
appliances 

❖ Off-the-shelf sensors for home 
automation

 

Request and store sensor data 

Smart Detection Z-WAY SERVER 
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Correlative Monitoring - Forecasting Module

target variable (t)
Total Electricity

Motion

Hot Water

Indoor 
Temperature



Main steps of the detection algorithm
❖ Build predictive model that forecasts energy consumption in the next time period(s) 

based on past consumption (over a trailing window) and other sensor readings 
❖ Various choices: linear, kernel, GP regression, support vector regression

Framework 1 Measurement-based False Data Detection
Require: For each forecasting period: new training set X and t.
Require: Control chart parameters � and L.
Require: Robust threshold ✓r and period ⌫.
1: [Start] Fit the model and begin data monitoring.
2: [Forecast] Upon observing (tn,xn), compute y(xn,w).
3: [Update] Compute error en = tn � y(xn,w).
4: [Control Chart] Compute Sn = f(�, L, en).
5: [Robust EWMA] Apply two-in-a-row rule on Sn (see section III-B).
6: [Robust Filter] Update A = {k : |Sk| > L��, k = n � ⌫, . . . , n}.
7: [Decision] Raise alarm if |A| > ✓r , else system is in-control.

online monitoring is required. Further, a linear model is well-
suited when individual power circuits and appliances are
monitored, as in our case. However, the system designer is not
restricted to these choices, and alternative prediction models
can be considered. Similarly, one can opt for a different
decision module. We decided to work with an exponentially
weighted moving average control chart due to its simplicity
and robustness, but other stopping rules also apply (e.g., see
Wald-based detection [29]).

A. Forecasting Power Utilization
We provide a basic overview of Bayesian regression, and the

reader is referred to [30] for extended discussion. Throughout
the paper, the smart meter power state is denoted as t and
sensor observations are denoted by vector x = (x1, . . . , xM )T .
In other words, variables t would play the role of target values
in our prediction scheme, and input x would be the vector
of independent variables known as features. For each new
forecasting epoch (see Framework 1), a training set of size
N is available; t := (t1, . . . , tN )T represents the target values
in the training set, and {x1, . . . ,xN} are the corresponding
target values. We construct the N ⇥ M measurement matrix
X by stacking the input variables of each data point. Our linear
regression model involves a linear combination of inputs, i.e.,
y(x,w) = w

T
x, where w are the parameters/weights that

need to be determined. We further assume that given the value
of x, the corresponding value of t has a Gaussian distribution
with mean equal to y(x,w) and variance ��1. Thus,

p(t|x,w,�) = N (t|y(x,w),��1). (1)

Assuming the data is drawn independently from (1), the
likelihood is p(t|X,w,�) =

QN
n=1 N (tn|y(xn,w),��1).

In a Bayesian setting, a prior of the model parameters w

is introduced. We consider a conjugate prior, zero mean
isotropic Gaussian governed by a single parameter ↵, i.e.,
p(w|↵) = N (0,↵�1

I), where I is the identity matrix of
appropriate dimension. The posterior distribution, which is
proportional to the product of the likelihood function and the
prior, takes the form of another Gaussian distribution

p(w|t) = N (w|mN , SN ), (2)

with mN = �SNX

T
t and S�1

N = ↵I+ �XT
X. The optimal

parameter vector w⇤ in y(x,w) is obtained by maximizing the
posterior distribution. Since this is a Gaussian distribution, its
mode coincides with the mean, and thus the maximizing vector
is w

⇤ = mN .

Further, our framework requires knowledge of the pre-
dictive distribution. For a new data point (t,x) (we omit
time indexing to keep notation uncluttered) this is defined
by p(t|x, t,↵,�) =

R
p(t|x,w,�)p(w|t,↵,�)dw. The con-

ditional distribution p(t|x,w,�) is given by (1) and the
weight posterior distribution is given by (2). The predictive
distribution is hence the result of the convolution of two
Gaussians [30], and takes the form

p(t|x, t,↵,�) = N (t|mT
Nx,�2

N (x)), (3)

where the variance of the predictive distribution is given by
�2
N (x) = ��1+x

TSNx. The first term represents the noise in
the data, and the second term reflects the uncertainty in making
predictions associated with the parameter vector w

⇤. Thus,
our model is adaptively learning the variance of the predictive
distribution, something that would be proven very important
for tracking the “reference distribution” in our hypothesis
testing module, described shortly.

So far we have assumed that hyperparameters ↵ and �
are known. In a fully Bayesian treatment, one introduces
prior distributions for them. Predictions are then made by
marginalizing with respect to these hyperparameters as well
as with respect to parameters w. Instead of performing a
complete marginalization over all these variables (which is
analytically intractable for some choices of prior hyperparam-
eters, can be computationally intensive if done numerically or
can lead to poor results [30]) we follow a technique called
evidence approximation [30], [31]. Using this approximation,
the hyperparameters are determined by just looking at the
training data. The technique amounts to an iterative approach,
similar in spirit to Expectation-Maximization algorithms. In
the evidence approximation, the values of ↵ and � are ob-
tained by maximizing the marginal likelihood p(t|↵,�) =R
p(t|w,�)p(w|↵)dw, that represents the “evidence” for a

particular choice of the hyperparameters given the observed
data. The iterative procedure starts with initial values of ↵
and � and uses them to compute mN . It then derives the
eigenvalues �i of the eigenvector equation

(�XT
X)ui = �iui, for i = 1, . . . ,M. (4)

Then quantity � is computed as � =
PM

i=1
�i

↵+�i
, which is

used to obtain the updated value of ↵ that maximizes the
marginal likelihood

↵ =
�

m

T
NmN

. (5)

Following similar steps, one can maximize the marginal like-
lihood with respect to � as well, and obtain a new value for
� as

1

�
=

1

N � �

NX

n=1

{tn �m

T
Nxn}2. (6)

The iterative cycle of finding mN , � and using them to update
↵, � repeats until ↵ and � reach a stationary point.
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Main steps of the detection algorithm
❖ Build predictive model that forecasts energy consumption in the next time 

period(s) based on past consumption (over a trailing window) and other sensor 
readings 
❖ Various choices: linear, kernel, GP regression, support vector regression 

❖ Obtain forecasting error: (prediction - actual reading) 
❖ Use predictive distribution to calculate the tail (p-value) of the error

B. Online Detection: Hypothesis Testing

The forecasting module provides predictions about elec-
tricity usage based on house sensor measurements. The next
step computes the difference of the predicted value with
the actual smart meter reading, and formulates a sequential
hypothesis testing problem to decide whether the sequence of
values observed comes from a system operating at the normal
regime (i.e., values obey the Null Hypothesis or, equivalently,
reference distribution).

The reference distribution, denoted as Fn, for the differences
(referred as errors henceforth) comes from the predictive
distribution described earlier. Following [32], for each new
observation (tn,xn) we calculate the error en := tn�m

T
Nxn,

and then find the p value corresponding to that error using the
fact that

p(en|xn, t,↵,�) = N (en|0,�2
N (xn)). (7)

The p value pn for negative errors en with reference
distribution Fn is set to be the lower-tail probability, Fn(en).
If the error is positive, then pn = 1 � Fn(en). We are inter-
ested in employing a hypothesis testing criterion for detecting
sequences of “abnormally” small p values. We monitor for
anomalies by utilizing an Exponentially Weighted Moving
Average (EWMA) control scheme [33], known as Q-charting
in quality control. We first take the normal score ��1(pt) of
the p value, where ��1 is the standard normal cumulative dis-
tribution inverse function. This allows application of standard
control chart methods for detecting “out-of-control” values.

In short, event detection is based on thresholding

Sn = (1� �)Sn�1 + �Zn, where Zn = ��1(pn),

for a weight � in (0, 1]. Both the magnitude and duration
of the anomalous event can drive the value of Sn to a
level where an alert is triggered. For example, abrupt power
shifts (e.g., elevating power by 6KW, see Table I) would
be almost instantaneously detected with high probability. On
the other hand, “stealthy” power shifts (e.g., 1KW) could be
unnoticeable for awhile, but as their duration persists detection
probability elevates.

The sensitivity of EWMA is tuned by the weight � and
the threshold parameter L. When the process is under control
and the reference distribution is suitable, Zn is distributed ap-
proximately as normal N (0, 1). Assuming independent Zn’s,
the severity test Sn is approximately normal N (0,�2

�) with
�2
� = �/(2 � �). [33] provides guidelines on calibrating the

control chart by choosing appropriate values of � and L that
balance the time between false alarms (named as average
run-length in [33]) and the ability to determine whether the
process under control has “shifted” to anomalous regimes of
certain magnitude. Extensive experimentation suggests that
(�, L) pairs (.53, 3.714), (.84, 3.719), (1, 3.719) are sensible
options for monitoring real-world data (see Table I).

To tame the false alarm rate we engage a robust EWMA
technique by exercising the two-in-a-row rule [33]. When
a single outlier is observed, i.e., |Sn| > ��L, the control

statistic Sn remains unchanged and a counter is set. If the next
observation (the new normal score) makes the updated control
statistic to lie within the outlier limits, the counter resets;
otherwise, an out-of-control signal is given. The final step of
our framework is the robust filter, and checks for persistent
out-of-control signals. As Framework 1 depicts, we keep a
history window of ⌫ observations and maintain a counter of
the out-of-control signals seen in that window. An alert is
raised whenever the counter exceeds the user-defined threshold
✓r. The severity of alert level can be visualized with a lively
updated dashboard, as illustrated in Figure 2 (right panel).

IV. PERFORMANCE EVALUATION

We evaluate our framework using the Smart⇤ (SmartStar)
dataset [19], and data from a colleagues’s residence (with
added, synthetic noise). The Smart⇤ projects provides real-
world fine granularity power data from several households;
we use “Home A”. Aggregate power along with the power of
each individual circuit in the house (25 in total) are recorded.
In addition, measurements from several switches, meters,
environmental factors (e.g., indoor/outdoor temperature, etc.),
motion and others are available. Overall, we use 26 features as
independent inputs for prediction, taken at 1-minute snapshots.

Figure 2 (left) evaluates the prediction accuracy and com-
putational performance of our forecasting algorithm. Com-
putationally expensive operations include the matrix inver-
sion, the singular value decomposition (both entail a O(M3)
complexity), and the matrix multiplication of order O(NM2)
needed to fit the regression model (i.e., training phase, see
Eqs. (2) and (4)). As Figure 2 illustrates though, training
time is of the order of milliseconds, and predictions take
negligible time. We also compute and show the relative mean
squared error (ReMSE). ReMSE is defined as, ReMSE =P

n(y(xn,w) � tn)2/
P

n t
2
n, for all n in the forecasting

period. We demonstrate performance for various sizes of
training and forecasting intervals (note that re-training is
needed after the end of each forecasting interval). As expected,
training times monotonically increase linearly (left panel of
Figure 2) as the dimension N of matrix X increases (in
our case, M ⌧ N ). Figure 2 (left) suggests that good
prediction accuracy is achieved by balancing the number of
observations N (training size) with the forecasting period.
Extensive experimentation advocates training sizes ranging
from 24 to 96hrs worth of measurements and a look-ahead
forecasting period of 30 to 60 time points.

Table I tabulates results on detection accuracy. We focus
on four different scenarios in which power is altered from
its true value by the corresponding shift value (in KWs). For
each scenario, we inject five anomalies at random times with
duration of 30 observation intervals, and we repeat the given
experiment for a total of 50 runs. For example, Figure 1 (lower
panel) shows five anomalies occurring at the time instances
with red vertical stripes. It also displays time-series of errors
(upper panel) and predictions aside the actual targets for three
months (middle). We mitigate false positives with a robust
filter of length ⌫ = 10 minutes and ✓r = 3, as shown
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Evaluation: Smart* dataset

❖ Measurement period: May - July 2012

❖ Granularity of 1-minute

❖ Training window size: 24 hours

❖ Forecasting period: 30, 60 minutes

❖ Inject random data attacks



in Figure 2 that depicts a dashboard-like visualization that
can be lively updated. We report results on the mean delay
elapsing before EWMA notices the first out-of-control point
after a data injection, and on the precision and recall of the
events classification. Let Tp, Fp and Fn denote the number of
true positives, false positives and false negatives, respectively.
Precision is defined as the ratio Tp/(Tp + Fp), recall as
Tp/(Tp + Fn) and both lie in [0, 1]. We also include the
F1-score, the harmonic mean thereof. Briefly, a hypothesis
test that is too sensitive gives a higher number of false alarms
and this would lower the detection precision. On the contrary,
a test that misses anomalies (i.e., false negatives) will have
a low recall score. We tabulate results on 3 pairs of EWMA
parameters � and L.

It is intuitively appealing that accuracy (as reflected by
precision, recall and detection delay) elevates as the power
shift increases. Indeed, to defend against false data injection
attacks, these sudden power spikes should be rapidly diag-
nosed. In addition, Figure 2 (middle panel) confirms that the
model chosen for the reference distribution is adequate. The
figure shows the distribution of the p values under the Null
hypothesis. When the system is in control, the p values of the
reference distribution (see Eq. (7)) are uniformly distributed.
This visualization serves as a model validation for the user,
and the system can be restarted or stopped for re-calibration
when the distribution of p values deviates from uniformity.

Next, we check identification accuracy on stealth data
injections (i.e., spurious data of low intensity). Even though
sporadic, low magnitude injections are unlikely to threaten
grid stability (they fall within the normal load tolerance of
the grid [34]; instead, detecting dramatic shifts is the primary
concern), we delve more into it. Table II sheds more light
on performance for power shifts around 10% of the peak
demand (“Home A” of [19] peaks around 10KW). As shown,
for the selected (.53, 3.714) EWMA parameters, probability of
exposure increases as the duration of attack persists. We notice,
however, that some small injections may remain undetected
and false positives may surface. Although this needs further
examination as part of ongoing work, we conjecture that the
network-wide detection accuracy would not be compromised.
We believe that at a data concentrator center that collectively
monitors alerts generated by our system, false positives would
be uniformly spread in time and would not trigger a
network-wide alert. On the contrary, coordinated attacks
(stealth or intense injections) would be correctly identified.

Further, we performed experiments on simulated data; i.e.,
data for which the linear relationship between independent
inputs and the target variable actually exists, given the value
of an additive Gaussian noise (zero mean, standard deviation
300W). Results for EWMA pairs (.29, 3.686) and (.53, 3.714)
are tabulated in Table III. The high recall and precision scores
clearly emphasize that under the correct model assumptions,
our framework is highly suitable for the problem at hand.

Finally, we employed the naı̈ve approach of an EWMA-
based change-point detection by just looking at the target
electricity values. This method is severely inaccurate due to a

TABLE I: Evaluation of detection performance on the Smart⇤
dataset. Values in parenthesis signify standard deviations.

Shift
(KW)

Weight
�

Delay
(in mins) Precision Recall F1-score

�1 1 9.7(7.2) .29(.45) .07(.11) .11
�1 .53 8.1(4.6) .76(.41) .29(.21) .42
�1 .84 10.4(5.5) .48(.50) .12(.14) .19

1 1 8.0(4.5) .75(.43) .26(.19) .38
1 .53 3.4(1.7) .95(.17) .50(.22) .66
1 .84 6.6(3.4) .86(.31) .31(.19) .46

3 1 1.1(.5) .98(.05) 1.00(.03) .99
3 .53 1.0(.0) .98(.06) 1.00(.03) .99
3 .84 1.0(.2) .98(.06) 1.00(.03) .99

6 1 1.2(.9) .96(.11) .99(.05) .97
6 .53 1.0(.0) .97(.08) 1.00(.05) .98
6 .84 1.0(0.0) .96(.09) .99(.05) .98

TABLE II: Detection performance on stealth injections.

Duration
(in mins)

Shift
(KW)

Weight
�

Delay
(in mins) Precision Recall

10 1 .53 2.7(0.7) .05(.11) .03(.07)
20 1 .53 2.9(1.0) .61(.19) .40(.20)
30 1 .53 3.8(1.8) .65(.20) .49(.23)
40 1 .53 3.8(1.8) .70(.09) .52(.19)
50 1 .53 4.0(2.2) .73(.14) .61(.23)
60 1 .53 4.2(2.5) .72(.09) .58(.21)
120 1 .53 4.8(4.7) .74(.09) .60(.20)

plethora of false positive alerts (around 4 false alarms every
100 observations).

V. DISCUSSION

Electric grids are verging on large technological changes
due to the introduction of modern devices with two-way
communication capabilities. Hence, it is important to ensure
secure communications together with developing the necessary
infrastructure to timely detect nefarious activities. A major
security threat is false data injection attacks. Previous work
tackles the problem from a network-view perspective (i.e.,
looking at data from multiple grid nodes). Here, we consider a
different vantage point and aim at detecting attacks directly at
their origin; the home-area level. We follow a measurement-
based approach, and use data collected from sensors deployed
in a home network to learn and be able to forecast electricity
consumption. Large deviations from expected consumption are
flagged anomalies by our online Q-chart scheme.

We use a light-weight algorithm for forecasting, such as
Bayesian linear regression, but our framework can be extended
with more elaborate models. One could employ non-linear
regression (e.g., Gaussian processes, neural networks) if non-
linearities between the input variables and the targets exist.
In addition to spoofing detection, our system offers a health-
assessment for other threats, such as energy theft or other
power leaks. We believe that the proposed approach can work
in harmony with signature-based anomaly detection methods,
and can offer a complementary “grid health” signal to existing
methods that take a network-view approach.
Acknowledgements: We thank Meghan Clark and Prabal



in Figure 2 that depicts a dashboard-like visualization that
can be lively updated. We report results on the mean delay
elapsing before EWMA notices the first out-of-control point
after a data injection, and on the precision and recall of the
events classification. Let Tp, Fp and Fn denote the number of
true positives, false positives and false negatives, respectively.
Precision is defined as the ratio Tp/(Tp + Fp), recall as
Tp/(Tp + Fn) and both lie in [0, 1]. We also include the
F1-score, the harmonic mean thereof. Briefly, a hypothesis
test that is too sensitive gives a higher number of false alarms
and this would lower the detection precision. On the contrary,
a test that misses anomalies (i.e., false negatives) will have
a low recall score. We tabulate results on 3 pairs of EWMA
parameters � and L.

It is intuitively appealing that accuracy (as reflected by
precision, recall and detection delay) elevates as the power
shift increases. Indeed, to defend against false data injection
attacks, these sudden power spikes should be rapidly diag-
nosed. In addition, Figure 2 (middle panel) confirms that the
model chosen for the reference distribution is adequate. The
figure shows the distribution of the p values under the Null
hypothesis. When the system is in control, the p values of the
reference distribution (see Eq. (7)) are uniformly distributed.
This visualization serves as a model validation for the user,
and the system can be restarted or stopped for re-calibration
when the distribution of p values deviates from uniformity.

Next, we check identification accuracy on stealth data
injections (i.e., spurious data of low intensity). Even though
sporadic, low magnitude injections are unlikely to threaten
grid stability (they fall within the normal load tolerance of
the grid [34]; instead, detecting dramatic shifts is the primary
concern), we delve more into it. Table II sheds more light
on performance for power shifts around 10% of the peak
demand (“Home A” of [19] peaks around 10KW). As shown,
for the selected (.53, 3.714) EWMA parameters, probability of
exposure increases as the duration of attack persists. We notice,
however, that some small injections may remain undetected
and false positives may surface. Although this needs further
examination as part of ongoing work, we conjecture that the
network-wide detection accuracy would not be compromised.
We believe that at a data concentrator center that collectively
monitors alerts generated by our system, false positives would
be uniformly spread in time and would not trigger a
network-wide alert. On the contrary, coordinated attacks
(stealth or intense injections) would be correctly identified.

Further, we performed experiments on simulated data; i.e.,
data for which the linear relationship between independent
inputs and the target variable actually exists, given the value
of an additive Gaussian noise (zero mean, standard deviation
300W). Results for EWMA pairs (.29, 3.686) and (.53, 3.714)
are tabulated in Table III. The high recall and precision scores
clearly emphasize that under the correct model assumptions,
our framework is highly suitable for the problem at hand.

Finally, we employed the naı̈ve approach of an EWMA-
based change-point detection by just looking at the target
electricity values. This method is severely inaccurate due to a

TABLE I: Evaluation of detection performance on the Smart⇤
dataset. Values in parenthesis signify standard deviations.

Shift
(KW)

Weight
�

Delay
(in mins) Precision Recall F1-score

�1 1 9.7(7.2) .29(.45) .07(.11) .11
�1 .53 8.1(4.6) .76(.41) .29(.21) .42
�1 .84 10.4(5.5) .48(.50) .12(.14) .19

1 1 8.0(4.5) .75(.43) .26(.19) .38
1 .53 3.4(1.7) .95(.17) .50(.22) .66
1 .84 6.6(3.4) .86(.31) .31(.19) .46

3 1 1.1(.5) .98(.05) 1.00(.03) .99
3 .53 1.0(.0) .98(.06) 1.00(.03) .99
3 .84 1.0(.2) .98(.06) 1.00(.03) .99

6 1 1.2(.9) .96(.11) .99(.05) .97
6 .53 1.0(.0) .97(.08) 1.00(.05) .98
6 .84 1.0(0.0) .96(.09) .99(.05) .98

TABLE II: Detection performance on stealth injections.

Duration
(in mins)

Shift
(KW)

Weight
�

Delay
(in mins) Precision Recall

10 1 .53 2.7(0.7) .05(.11) .03(.07)
20 1 .53 2.9(1.0) .61(.19) .40(.20)
30 1 .53 3.8(1.8) .65(.20) .49(.23)
40 1 .53 3.8(1.8) .70(.09) .52(.19)
50 1 .53 4.0(2.2) .73(.14) .61(.23)
60 1 .53 4.2(2.5) .72(.09) .58(.21)
120 1 .53 4.8(4.7) .74(.09) .60(.20)

plethora of false positive alerts (around 4 false alarms every
100 observations).

V. DISCUSSION

Electric grids are verging on large technological changes
due to the introduction of modern devices with two-way
communication capabilities. Hence, it is important to ensure
secure communications together with developing the necessary
infrastructure to timely detect nefarious activities. A major
security threat is false data injection attacks. Previous work
tackles the problem from a network-view perspective (i.e.,
looking at data from multiple grid nodes). Here, we consider a
different vantage point and aim at detecting attacks directly at
their origin; the home-area level. We follow a measurement-
based approach, and use data collected from sensors deployed
in a home network to learn and be able to forecast electricity
consumption. Large deviations from expected consumption are
flagged anomalies by our online Q-chart scheme.

We use a light-weight algorithm for forecasting, such as
Bayesian linear regression, but our framework can be extended
with more elaborate models. One could employ non-linear
regression (e.g., Gaussian processes, neural networks) if non-
linearities between the input variables and the targets exist.
In addition to spoofing detection, our system offers a health-
assessment for other threats, such as energy theft or other
power leaks. We believe that the proposed approach can work
in harmony with signature-based anomaly detection methods,
and can offer a complementary “grid health” signal to existing
methods that take a network-view approach.
Acknowledgements: We thank Meghan Clark and Prabal



Summary & Future Directions
❖ Correlative monitoring in HANs, bottom-up approach 
❖ Proof-of-concept implementation with Raspberry Pi’s and Z-Wave 

sensors - partnership with NextEnergy! 
❖ Incorporate energy harvesting sensing! 
❖ Acknowledgements: Joe Adams,  Yeabsera Kebede,  Max Morgan,  

Davis Vorva (UM/Merit), Atman Fozdar (EMU),  Wayne Snyder 
(NextEnergy) 

❖ Supported by NSF SATC CNS-1422078  



–Jim Barksdale, former Netscape CEO

“If we have data, let’s look at data. 
If all we have are opinions, let’s go with mine.” 
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Bayesian Linear Regression

❖ Avoid the need for cross-validation and model 
selection 

❖ Provides a predictive distribution 
❖ Linear: good choice when data from HAN circuits 

are available. In addition, with appropriate basis 
functions non-linearity may not be an issue



Framework 1 Measurement-based False Data Detection
Require: For each forecasting period: new training set X and t.
Require: Control chart parameters � and L.
Require: Robust threshold ✓r and period ⌫.
1: [Start] Fit the model and begin data monitoring.
2: [Forecast] Upon observing (tn,xn), compute y(xn,w).
3: [Update] Compute error en = tn � y(xn,w).
4: [Control Chart] Compute Sn = f(�, L, en).
5: [Robust EWMA] Apply two-in-a-row rule on Sn (see section III-B).
6: [Robust Filter] Update A = {k : |Sk| > L��, k = n � ⌫, . . . , n}.
7: [Decision] Raise alarm if |A| > ✓r , else system is in-control.

online monitoring is required. Further, a linear model is well-
suited when individual power circuits and appliances are
monitored, as in our case. However, the system designer is not
restricted to these choices, and alternative prediction models
can be considered. Similarly, one can opt for a different
decision module. We decided to work with an exponentially
weighted moving average control chart due to its simplicity
and robustness, but other stopping rules also apply (e.g., see
Wald-based detection [29]).

A. Forecasting Power Utilization
We provide a basic overview of Bayesian regression, and the

reader is referred to [30] for extended discussion. Throughout
the paper, the smart meter power state is denoted as t and
sensor observations are denoted by vector x = (x1, . . . , xM )T .
In other words, variables t would play the role of target values
in our prediction scheme, and input x would be the vector
of independent variables known as features. For each new
forecasting epoch (see Framework 1), a training set of size
N is available; t := (t1, . . . , tN )T represents the target values
in the training set, and {x1, . . . ,xN} are the corresponding
target values. We construct the N ⇥ M measurement matrix
X by stacking the input variables of each data point. Our linear
regression model involves a linear combination of inputs, i.e.,
y(x,w) = w

T
x, where w are the parameters/weights that

need to be determined. We further assume that given the value
of x, the corresponding value of t has a Gaussian distribution
with mean equal to y(x,w) and variance ��1. Thus,

p(t|x,w,�) = N (t|y(x,w),��1). (1)

Assuming the data is drawn independently from (1), the
likelihood is p(t|X,w,�) =

QN
n=1 N (tn|y(xn,w),��1).

In a Bayesian setting, a prior of the model parameters w

is introduced. We consider a conjugate prior, zero mean
isotropic Gaussian governed by a single parameter ↵, i.e.,
p(w|↵) = N (0,↵�1

I), where I is the identity matrix of
appropriate dimension. The posterior distribution, which is
proportional to the product of the likelihood function and the
prior, takes the form of another Gaussian distribution

p(w|t) = N (w|mN , SN ), (2)

with mN = �SNX

T
t and S�1

N = ↵I+ �XT
X. The optimal

parameter vector w⇤ in y(x,w) is obtained by maximizing the
posterior distribution. Since this is a Gaussian distribution, its
mode coincides with the mean, and thus the maximizing vector
is w

⇤ = mN .

Further, our framework requires knowledge of the pre-
dictive distribution. For a new data point (t,x) (we omit
time indexing to keep notation uncluttered) this is defined
by p(t|x, t,↵,�) =

R
p(t|x,w,�)p(w|t,↵,�)dw. The con-

ditional distribution p(t|x,w,�) is given by (1) and the
weight posterior distribution is given by (2). The predictive
distribution is hence the result of the convolution of two
Gaussians [30], and takes the form

p(t|x, t,↵,�) = N (t|mT
Nx,�2

N (x)), (3)

where the variance of the predictive distribution is given by
�2
N (x) = ��1+x

TSNx. The first term represents the noise in
the data, and the second term reflects the uncertainty in making
predictions associated with the parameter vector w

⇤. Thus,
our model is adaptively learning the variance of the predictive
distribution, something that would be proven very important
for tracking the “reference distribution” in our hypothesis
testing module, described shortly.

So far we have assumed that hyperparameters ↵ and �
are known. In a fully Bayesian treatment, one introduces
prior distributions for them. Predictions are then made by
marginalizing with respect to these hyperparameters as well
as with respect to parameters w. Instead of performing a
complete marginalization over all these variables (which is
analytically intractable for some choices of prior hyperparam-
eters, can be computationally intensive if done numerically or
can lead to poor results [30]) we follow a technique called
evidence approximation [30], [31]. Using this approximation,
the hyperparameters are determined by just looking at the
training data. The technique amounts to an iterative approach,
similar in spirit to Expectation-Maximization algorithms. In
the evidence approximation, the values of ↵ and � are ob-
tained by maximizing the marginal likelihood p(t|↵,�) =R
p(t|w,�)p(w|↵)dw, that represents the “evidence” for a

particular choice of the hyperparameters given the observed
data. The iterative procedure starts with initial values of ↵
and � and uses them to compute mN . It then derives the
eigenvalues �i of the eigenvector equation

(�XT
X)ui = �iui, for i = 1, . . . ,M. (4)

Then quantity � is computed as � =
PM

i=1
�i

↵+�i
, which is

used to obtain the updated value of ↵ that maximizes the
marginal likelihood

↵ =
�

m

T
NmN

. (5)

Following similar steps, one can maximize the marginal like-
lihood with respect to � as well, and obtain a new value for
� as

1

�
=

1

N � �

NX

n=1

{tn �m

T
Nxn}2. (6)

The iterative cycle of finding mN , � and using them to update
↵, � repeats until ↵ and � reach a stationary point.
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