
AMON: An Open Source Architecture for

Online Monitoring, Statistical Analysis and

Forensics of Multi-gigabit Streams

Michael Kallitsis, Stilian Stoev, Shrijita Bhattacharya, George Michailidis

mgkallit@merit.edu, sstoev@umich.edu, shrijita@umich.edu, gmichail@ufl.edu

Abstract
The Internet, as a global system of interconnected networks, carries an extensive array of infor-

mation resources and services. Key requirements include good quality-of-service and protection of

the infrastructure from nefarious activity (e.g. distributed denial of service—DDoS—attacks). Network

monitoring is essential to network engineering, capacity planning and prevention / mitigation of threats.

We develop an open source architecture, AMON (All-packet MONitor), for online monitoring and

analysis of multi-gigabit network streams. It leverages the high-performance packet monitor PF RING

and is readily deployable on commodity hardware. AMON examines all packets, partitions traffic into

sub-streams by using rapid hashing and computes certain real-time data products. The resulting data

structures provide views of the intensity and connectivity structure of network traffic at the time-

scale of routing. The proposed integrated framework includes modules for the identification of heavy-

hitters as well as for visualization and statistical detection at the time-of-onset of high impact events

such as DDoS. This allows operators to quickly visualize and diagnose attacks, and limit offline and

time-consuming post-mortem analysis. We demonstrate our system in the context of real-world attack

incidents, and validate it against state-of-the-art alternatives. AMON has been deployed and is currently

processing 10Gbps+ live Internet traffic at Merit Network. It is extensible and allows the addition of

further statistical and filtering modules for real-time forensics.

Index Terms

Network monitoring, detection, identification, visualization, PF RING, gigabit streams, commodity

hardware, data products, algorithms, statistics, heavy tails, extreme value distribution, network attacks.

I. INTRODUCTION

Motivation and background: The Internet has become a vital resource to business, governments

and society, worldwide. It has thrived and grown under diverse conditions and technologies with



little to no centralized regulation. Its fundamental design principles have successfully ensured its

robustness and broad accessibility. However, these same principles do not provide centralized

management and/or monitoring of the entire network. Therefore, understanding broad based

patterns such as traffic loads and thus adequacy of capacity and quality-of-service, composition

of network traffic, adoption of new protocols and applications, are challenging tasks. Such traffic

characterization problems and the corresponding network engineering, management and capacity

planning solutions made necessary the analysis of large volumes of data, and also gave rise to

statistical techniques to handle them, such as streaming algorithms [1], [2], sketches [3]–[5],

tomography [6], [7] and analysis of heavy tails and long range dependence [8], [9].

In addition, it enables numerous vulnerabilities and security threats, both to the infrastructure

and to its user base. For example, malicious activities such as distributed denial of service

(DDoS) attacks are relatively easy to implement and rather hard to prevent, since best practices

like origin IP anti-spoofing (e.g., BCP38 recommendation [10]) are not universally deployed

by network operators. Their timely detection at appropriate short time-scales (e.g. in seconds)

requires processing vast amounts of meta-data (e.g., NetFlow) distributed throughout the entire

network, thus making it a challenging task. Further, the non-centrally controlled diverse hardware

and software network infrastructure, allows many additional vulnerabilities open to exploitation

by adversaries. A recent example features the exploitation of misconfigured NTP (network time

protocol) servers, that led to one of the largest DDoS attacks ever recorded [11]. In such reflection

and amplification attacks [12], multiple small requests are sent to several mis-configured NTP

servers (or other UDP-based services), which inflict transmissions of large data amounts to

targeted hosts. Thus, the intended victims get overwhelmed with traffic and temporarily disabled.

Volumetric DDoS attacks are just one possible scenario; low-volume DDoS activities that rely

on traffic sparseness to avoid detection are also of concern. It is important to be able to defend

against the DDoS threat model and detect the onset of such potentially unpredictable attacks in

order to adequately secure the network, e.g., by filtering (blocking) traffic or deploying security

patches to network gear.

The key to addressing these diverse topics is the availability of adequate data coupled with

advanced monitoring and analysis tools and the corresponding software infrastructure. The vast



volume of network traffic streams makes collection, storage and processing of all traffic data

infeasible. Therefore, the focus has been on the information available in packet headers, such

as source and destination addresses, application ports, protocol, payload size, etc. While such

type of meta-data is more manageable, its rate of occurrence is still very fast. For example,

storing packet header information (say initial 96 bytes of an Ethernet frame) from a 10 GE link

at Merit1 at a rate of 1.8 Mpps (million packets per second) requires 1.7 GB per 10 seconds

(equivalently, around 15 TB per single day). The industry has developed tools such as NetFlow

and others (sFlow, etc.), which effectively compress the packet meta data by grouping them

into flows. NetFlow-alike traffic sampling functionality is available on many network elements.

This compression mechanism, however, creates an intermediate step, which introduces a delay

in the access to traffic meta-data (in addition to distorting its structure).

Even if one has access to raw data on packet headers or NetFlow, its high acquisition rate

makes online analysis of this information often a formidable challenge. Many conventional

statistical methods and algorithms are not sequential in nature and require access to large batches

of data spanning several minutes to hours. Thus, possible DDoS attacks or changes in the

network traffic patterns will be detected with offline analysis several minutes after their onset.

The time-scales of such analyses are not desirable, if the goal is to prevent large-scale network

outages. Note that specialized, albeit very expensive, appliances exist (e.g., Arbor Networks’

PeakFlow), but in real-world settings are configured to receive heavily sampled Flow data (i.e.,

sampling rates of 1:1000 or more). Hence, low-volume or short-term attacks may elude detection.

Further, such tools require a priori knowledge of baseline traffic patterns.

These challenges motivate us to develop new software and algorithmic infrastructure for

harvesting and monitoring network traffic data at the time-scale of routing (i.e., at wire-speed),

guided by the following principles: (a) examine all packets at the monitoring host; (b) develop

memory efficient data structures and statistical summaries that can be computed and retained

1Merit Network, Inc. operates Michigan’s research and education network. It is an Internet service provider that serves a

population of nearly 1 million users. Merit is the largest IP network in Michigan, and its network includes a wide range of link

types that include link speeds from T1 through 100Gbps. The network backbone consists of a 100G fiber ring, which passes

through the major cities of Michigan, as well as Chicago.



at the time-scale of routing; (c) easy to build and deploy using commodity, inexpensive, off-

the-shelf hardware; (d) the resulting data products should be available to be communicated and

shared in real-time to centralized monitoring stations for further forensics, and (e) the monitoring

architecture should allow for interactive filtering in real-time.

Related Work: Over the past 15 years, many practical tools have been developed for intrusion

detection. For example, Snort (see, snort.org), Suricata (suricata-ids.org) and Bro

(bro.org) are popular tools that rely on signature-based methods to examine traffic data for

known malicious patterns. Nevertheless, recent malware often manage to evade pattern matching

detection by becoming polymorphic (i.e., existing in various forms via encryption). The proposed

work aims to complement existing tools by adopting instead a behavioral-based approach.

There exists a noteworthy amount of literature in the area of statistical, behavior-based

anomaly detection. Standard techniques that seek ‘change detection’ points in traffic time series

include exponential smoothing [13] or other more general time-series techniques [14], [15]. More

recent methods employ wavelet-based tools [16] or subspace reduction methodologies based

on principal component analysis [17], [18]. Such methods lack the capability of identifying

the actual ‘heavy-hitters’ and, most importantly, suffer from the ‘dimensionality curse’ (i.e.,

having multi-dimensional features to monitor) and/or are inadequate for online realization on

fast, multi-gigabit streams. Hence, there has been a lot of activity in the theoretical computer

science community on designing and studying efficient algorithms for data streams that aim to

alleviate the high dimensionality and high ‘velocity’ constraints. Many summary data structures

(i.e., sketches) have been developed to address the challenging problems of identification of

heavy-hitters or frequent items in a stream [19]–[25], anomaly detection in high-dimensional

regimes [3], [24], [26], [27], compressed sensing and estimation of frequency moments [4],

[28]–[33], community mining [34], etc. (see [35] and references therein).

In reality, the mere access to fast data streams involves formidable technical challenges.

Many of the more sophisticated sketch-based algorithms (e.g., [4], [26], [28], [33]) tackle the

multi-dimensional aspect of the problem, but implementing them on multi-gigabit streams is

rather challenging or often impossible without the use of specialized hardware (e.g., FPGA).

In addition, few frameworks (e.g., [24], [26]) take a holistic approach to develop methods



TABLE I: Characterization of previous work (representative sample).
Real-time High-Dim. Real-time Interactive Attack

Identification Detection Visual. Data Streams Zoom-in Classification

AMON yes yes yes yes yes yes (ongoing work) no

CGT [19] yes no no yes yes no no

Defeat [26] yes yes no yes no no yes

[24] yes yes no yes yes no no

[18] no yes no no no no yes

[27] no yes no no no2 no no

that address the problems of change detection and identification together. Nevertheless, we

acknowledge the presence of considerable previous work on the topics of network monitoring,

troubleshooting and intrusion discovery. At the same time, our open-source platform offers a

novel extendible framework that couples together the important problems of detection, iden-

tification and visualization of aberrant behavior in multi-gigabit streams. We propose new

algorithms that are a direct consequence of the data products generated by our framework.

Furthermore, there are relatively few tools that could allow network engineers to interactively

examine 10Gbps+ traffic streams on the time scale of routing. This motivates the approach we

have adopted in this paper, which focuses on leveraging several recent advances in high-speed

packet capture to provide tools that are easy and inexpensive to deploy, examine every packet

at the interface, and provide simple statistics of the ‘signal’ that allow network engineers to (a)

visualize structural aspects of traffic, (b) detect changes in intensity or structure of traffic sub-

flows, (c) potentially filter and zoom-in on anomalous IP address ranges identified automatically

and (d) identify ranges of exact IP addresses associated with anomalous events. Table I highlights

our contributions and identifies differences with previous literature.

Major Contributions: Our first contribution is the design and implementation of a software

monitoring framework, referred to as AMON (All-packet MONitor), working reliably over 10Gbps+

links. This framework is based on PF RING [36] in zero-copy mode which efficiently delivers

packets to the monitoring application by bypassing the OS kernel. We implement hash-based

traffic summaries, which simply randomly assign source and destination pairs to bins providing

an aggregate but essentially instantaneous picture of the traffic, which can be used to diagnose

2As noted in [27], it is limited to relatively low rates in an attempt to not overload the device and affect forwarding actions.
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(b) Software performance.

Fig. 1: The proposed framework. Left: AMON’s data products comprise the input of identification, statistical detection and

visualization modules introduced in this paper. Right: Performance at rates exceeding 20Gbps; minute drop rates recorded.

and visualize changes in structure and intensity.

Our second contribution is a suite of statistical tools for automatic detection of significant

changes in the structure and intensity of traffic. The accompanying instances of Boyer-Moore

majority vote algorithm [37] can be leveraged to identify precise IP addresses associated with at-

tacks; this is an important contribution as well. We illustrate the new data acquisition framework

with several views of the resulting data structures (hash-binned arrays), referred as ‘databricks’.

We show (with real data from Merit!) that even basic visualization tools and algorithms applied

to the right type of data can help instantaneously identify distributed attacks, which do not

contribute to large traffic volume (see ‘SSDP’ and ‘Tor’ case studies, Section V-D).

This paper is organized as follows: Section II introduces our monitoring architecture, including

the data products (Figure 2) and our software prototype; Section III introduces AMON’s iden-

tification component; Section IV discusses our statistical methodology for automatic detection.

Section V evaluates our software and algorithms on a rich set of real-world Internet data,

including four real DDoS case studies, and compares against successful and robust state-of-the-

art methods for detection and identification [19], [26].

II. DATA AND SOFTWARE INFRASTRUCTURE

An overview of the proposed architecture is portrayed in Figure 1a. The monitoring application

is installed on a machine that receives raw packets in a streaming fashion. In our prototype

at Merit Network, the monitoring probe receives traffic via a passive traffic mirror (using a

SPAN—switched port analyzer—setting) configured on a network switch. Packets are then



efficiently delivered at 10Gbps+ rates to the monitoring module via PF RING ZC. Subsequently,

all packets are processed in a streaming fashion for constructing, via efficient hashing, a data

matrix (i.e., the databrick depicted at Figure 2) and a separate matrix containing the most active

source-destination flows identified via our extension of the Boyer-Moore algorithm (Section III).

Periodically, these data products are shipped to a database for storage, further analysis and

dashboard-based visualizations. These data are analyzed through various detection algorithms

described in Section IV. Flows flagged by the detection module can be extracted for further

analysis by the corresponding filtering mode that is currently under development.

A. Data products via pseudo-random hash functions

Internet traffic monitored at a network interface can be viewed as a stream of items (ωn, vn), n =

1, 2, . . . (see e.g. [2]). The ωn ∈ Ω are the keys and vn are the updates (e.g., payload) of the

stream signal. For example, the set of keys could be all IPv4 addresses (Ω = {0, 1}32); IPv6

addresses; pairs of source-destination IP addresses (Ω = {0, 1}64); may include source and

destination ports, etc; while payloads could be bytes, packets, distinct ports, etc. Since it is not

feasible to store and manipulate the entire signal when monitoring 10Gbps+ links, we employ

hashing to compress the domain of the incoming stream keys into a smaller set. Collisions are

allowed and, in fact, expected, but the hash function is chosen so that it spreads out the set of

observed keys approximately uniformly.

Consider for example the set of IPv4 addresses {0, 1}32 and let h : {0, 1}32 → {1, . . . ,m}

be a hash function (see [25], [38], [39]) that uniformly spreads the addresses over the interval

{1, . . . ,m}. Upon observing key (s, d) of the source and destination of a packet, we compute

the hashes i := h(d) and j := h(s) and update the data matrix X = {X(i, j)}m×m as X(i, j) :=

X(i, j) + v. This matrix constitutes the first data output of our architecture and is depicted in

Fig. 2. It is emitted at periodic intervals (e.g., 1 or 10 seconds) to a centralized database for

online as well as further downstream analysis, and reinitialized. The row- and column-sums of

this matrix yield the destination- and source-indexed hash-binned arrays, also depicted on the

figure. These data products are used as inputs for the detection and visualization algorithms

described below.



Source bin
20 40 60 80 100 120

D
es

t b
in

20

40

60

80

100

120

#10 5

0.5

1

1.5

2

2.5

3

3.5

4

Sources bin
20 40 60 80 100 120

By
te

s 
(lo

g 
sc

al
e)

15.5

16

16.5

17

17.5

18

18.5

19

Destinations bin
20 40 60 80 100 120

By
te

s 
(lo

g 
sc

al
e)

15

16

17

18

19

20

21

Fig. 2: Our data products. These data arrays, generated online by our PF RING-based software, are used as the basic input

structures for our detection algorithms. Left: The ‘databrick’ matrix during the ‘Library’ attack (see Section V); the apparent

horizontal stripe (at dest ‘bin’ 82) signifies traffic from multiple sources to a single destination (victim). Middle: View of sources

array, constructed by a matrix column-sum. Right: Destinations array; observe that ‘bin’ 82 stands out (notice the log scale).

B. Software implementation: PF RING-based Monitoring

The AMON monitoring application is powered by PF RING, a high performance packet

capture network socket. Modern hardware advances in CPU speeds and architecture, memory

bandwidth and I/O buses have shifted the bottlenecks in multi-gigabit packet reception into the

software stack [40], [41]. PF RING avoids unnecessary memory copies between the operating

system layers, and hence the length of the packet journey between the network interface (NIC)

and the monitoring application is shortened. Consequently, the number of CPU cycles spent for

transferring packets from their NIC entry point to the application is significantly reduced. This

leads to optimal memory bandwidth utilization [40], [41], and therefore to extremely efficient

packet processing speeds (see Figure 1b).

Our system takes advantage of the zero-copy framework that PF RING offers. In this mode,

the monitoring application reads packets directly from the network interface, i.e., both the

OS kernel and the PF RING module are bypassed. As a result, efficient monitoring is now

achievable with commodity, off-the-shelf hardware. For example, all experiments in this study

were conducted using NIC cards costing below 800 USD. Although alternative fast packet

processing schemes exist [41], PF RING was selected due to its robustness, proved efficiency

and broad versatility.

III. IDENTIFICATION: THE HASH-THINNED BOYER–MOORE ALGORITHM

The proposed architecture periodically emits a list of heavy activity stream elements that

can be used for traffic engineering purposes, accounting and security forensics. When an alert



is raised, operators can readily examine these ‘heavy-hitters’. Our identification algorithm is

based on the Boyer-Moore (BM) majority vote algorithm [37], and the idea of stream thinning

for creating sub-streams described below. The so-named MJRTY Boyer-Moore algorithm [37]

can identify exactly the majority element—the element whose volume is at least 50% of the

total—in a stream, if one exists. It solves the problem in time linear in the length of the input

sequence and constant memory. We first define the identification problem at hand.

Problem Addressed 1. (IDENTIFICATION OF HEAVY-HITTERS) Given an input stream (ωn, vn),

identify the top-K most frequent items. The frequency of key ω is the sum of its updates v.

Next, we describe the original Boyer-Moore algorithm with an analogy to the one-dimensional

random walk on the line of non-negative integers. A variable count is initialized to 0 (i.e., the

origin) and a candidate variable cand is reserved for use. Once a new key arrives, we check to

see if count is 0. If it is, that IP is set to be the new candidate cand and we move count one

step-up, i.e. count = 1. Otherwise, if the IP is the same as cand, then cand remains unchanged

and count is incremented, and, if not, count moves one step-down (decremented). We then

proceed to the next IP and repeat the procedure. Provably, when all IPs are read, cand will hold

the one with majority, if majority exists.

Our extension of the MJRTY Boyer-Moore method applied to each sub-stream is outlined in

Figure 3. It returns up to m ‘heavy-hitter’ items present in a stream of keys, taking values in

{ω1, . . . , ωN}, by ‘thinning’ the original stream S into m sub-streams. In the update operation,

upon observing a new stream item (ω, v), we compute the sub-stream index s := h1(ω) using

hash function h1. In essence, we run m independent realizations of the Boyer-Moore algorithm

described above, one for each sub-stream. Arrays count and cand hold the algorithm state

for all sub-streams, i.e., cand[s] holds the majority candidate for s. Array count is updated

accordingly with the value of v as lines 9, 11 and 16 depict. The auxiliary flag for each sub-

stream s can help track whether a majority is indeed underlying into that sub-stream; at the start

of the monitoring period the flag corresponding to s is set, and as long as count[s] remains

non-negative (i.e., cand[s] needs no updates), the flag never resets. A flag that remains ‘on’



Input: Number heavy-hitters: K, K ≤ m
Input: hash function h1 : [N ]→ [m]

Input: hash function h2 : [N ]→ [m′], m′ = 256

1: count[i] = 0, i ∈ [m]

2: cand[i] = −1, i ∈ [m]

3: flag[i] = 1, i ∈ [m]

4: Pbm[i, j] = 0, i ∈ [m], j ∈ [m′].

(a) Initialization

1: Pest[s] = maxj∈[m′] Pbm[s, j], s ∈ [m]

2: Initialize O = ∅
3: for r=1 to K do

4: Find o = Argmaxj∈[m]\OPest[j]

5: O = O ∪ o #Exclude for next iteration

6: Output ω∗r =cand[o]

7: Output Pest[o]

8: end for

(b) Query operation

1: [Thin] Compute buckets s = h1(ω) and j = h2(ω).

2: if cand[s] == −1 then

3: cand[s] = ω, count[s] = v, Pbm[s,j] = v

4: else

5: if cand[s] == ω then

6: Pbm[s,j] = Pbm[s,j] + v, count[s] = count[s] + v

7: else

8: if count[s] > 0 then

9: count[s] = count[s] - v

10: if count[s] < 0 then

11: cand[s] = ω, count[s] = -count[s] # reset cand

12: flag[s] = 0 # reset flag

13: end if

14: Pbm[s,j] = Pbm[s,j] + v

15: else

16: cand[s] = ω, count[s] = v # reset cand

17: flag[s] = 0 # reset flag

18: Pbm[s,j] = Pbm[s,j] + v

19: end if

20: end if

21: end if

(c) Update operation for stream item (ω, v)

Fig. 3: Identification algorithm: Hash-thinned MJRTY Boyer-Moore.

guarantees the presence of a majority item3. An estimate of the frequency of each hitter can be

obtained via the m×m′ data structure Pbm. Through the use of an independent hash function

h2, this sketch structure keeps a hash array of size m′ for each sub-stream s, and gets updated

with the arrival of each stream element.

When a query operation is performed (see Figure 3), we retrieve the m candidates. An

estimation of the volume of a candidate ‘hot’ item s is recovered by looking at the maximum

value of sub-array Pbm[s]. The m candidates are ranked according to these estimates, and an

approximation of the set of top-K hitters is identified.

IV. STATISTICAL METHODS FOR ANOMALY DETECTION

This section introduces three new detection methods. We start with a data exploration and

model validation discussion that characterizes our data products; all methods leverage AMON’s

data. The first method is based on estimating the number of ‘heavy hitters’ at each time point;

3As an example, during the real-time 5-day experiment with the Chicago traffic (Figure 1b), an average fraction of at least

85.41% of all sub-streams (with 0.11% standard deviation) contained a majority element (for bytes).



this estimate represents a monitoring statistic that one can track, and time points with heavy

hitter activity can be flagged as anomalies. Next, a method derived by modeling the distribution

of the relative volume of the heaviest bins in the source and destination, 1-dimensional, hash-

binned arrays is introduced. This section concludes with a technique for discovering structural

changes in traffic, a method chiefly suitable for seemingly innocuous, low volume aberrant

behavior. Henceforth, the problem of anomaly detection is formulated as follows.

Problem Addressed 2. (DETECTION) Given an input traffic stream, find the time points when

the baseline probability distribution of an appropriate monitoring statistic seems inadequate.

A. Statistics, model validation and data exploration

The successful detection of statistically significant anomalies in the derived hash-binned traffic

arrays depends on the adequacy of the model employed. We undertook an extensive empirical

analysis of long hash-binned arrays and found that heavy-tails are ubiquitous. Figure 4 (left

panel, top figure) shows a time series of the linearized hash-binned array of outgoing (Source)

traffic at Merit Network for the period 17:30-18:30 EST on July 22, 2015. Observe the consistent

presence of extreme peaks in the data, some of which may in fact be due to an attack event

(see the ‘Library’ case study, Section V). By zooming-in on a short (seemingly calm) 3-minute

period—bottom right—we observe that the extreme peaks, although of lower magnitude, persist.

Heavy-tailed power law distributions are suitable statistical models for data exhibiting such

characteristics. Power laws are ubiquitous in computer network traffic measurements. It is

well known and documented that file-sizes, web-pages, Ethernet traffic, etc. exhibit power-law

tails [42], [43]. Specifically, let X = Xt(i) denote, for example, the amount of traffic registered

in a given hash-array bin i. Then, a parsimonious model for its tail is as follows:

P(X > x) ∼ c/xα, as x→∞, (1)

where ‘∼’ means that the ratio of the left- to the right-hand side converges to 1 and where α > 0

and c > 0 are constants. The smaller the exponent α, the heavier the tail of the distribution,

and the greater the frequency of extreme values. In particular, if α < 2, then the variance of X

does not exist and if α < 1, then the mean of this model is infinite.
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Fig. 4: Left panel: Time-series of Source hash-binned arrays (Top) and its zoomed-in version (Bottom-right), computed over

10-second windows. The max-spectrum of the entire time series is plotted on the bottom-left. Merit Network: 17:30-18:30 EST,

July 22, 2015. Right panel: Merit Network 16:00-17:00 EST, Aug 1, 2015 – the ‘Tor’ event in Section V-D. (Top-left) Ingress

connectivity for the top N = 3000 hash-binned flows per 10-second windows over 1-hour. (Top-right) QQ-plots demonstrating

accuracy of the Normal approximation of typical in-degree distributions. (Bottom plots) QQ-plots for anomalous bins.

Figure 4 (left panel, bottom) shows the max-spectrum of the entire 1-hour long time series

of hash-binned source traffic array. The max-spectrum is a plot of the mean log-block-maxima

versus the log-block-sizes of the data. A linear trend indicates the presence of power-law tails

as in (1), while the slope provides a consistent estimate of 1/α. Thus, steeper max-spectra

correspond to lower values of α and heavier tailed distributions generating more extreme values.

A useful feature of the max-spectrum plot is its ability to examine various log-block-sizes

(scales), thus enabling simultaneous examination of the power-law behavior in the data at various

time-scales [44]. As it can be seen, the power-law behavior (linearity in the spectrum) extends

over a wide range of time-scales from seconds to hours. The time-scale relevant to our studies

is a few seconds, which yields estimates of α ≈ 1.6, obtained by fitting a line over the range

of scales (log2-block-sizes) 1 through 6. Over intermediate time-scales (a few minutes) the

exponent α raises to about 2.5. The simple power-law models are no longer sufficient to capture

the distribution over the largest time-scales (hours), where complex intermittent non-stationarity

and diurnal trends dominate.

Alternatively, Figure 5 shows the complimentary cumulative distribution function x 7→ P(X >
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series and tail exponents of Source and Destination traffic hash-array computed over 10-second windows. Merit Network: July

22, 2015, 17:30-18:30 EST.

x) on a log-scale for both Source and Destination traffic arrays. Linear scaling on this plot

corresponds to power-law behavior as in (1) and the slope of the linear fit yields an estimate of

−α. Even though one cannot clearly talk about time-scales here, similarly to the max-spectrum

plot, one sees two regimes of power-law scaling. The heavy-tail behavior is relatively more

severe for the range of smaller values corresponding, on average, to shorter time-scales. Our

focus is on very short time scales of a few seconds to a minute. Our analysis shows that over

such time-scales, the power-law model captures the essence of the distribution. Figure 5 shows

tail exponents for both Source and Destination hash arrays Xt(i), i = 1, . . . ,m as a function

of time t. Observe the persistent heavy-tailed nature of the data throughout the entire period of

time. Note that the Source (outgoing) traffic is slightly heavier-tailed (lower exponents α) than

the Destination (incoming). Note also that the estimators of the tail exponent are rather robust to

large-volume fluctuations, e.g. in the Destination time-series. This is another important feature

of the max-spectrum, which will play a role in the successful detection of such anomalous event,

described in the following sections.



B. Detection of Heavy Hitters
In this section, we describe a methodology (named as ‘Fréchet method’) for aberrant behavior

discovery, based on monitoring the number of hash-bins involving heavy traffic, henceforth

referred as heavy hitters. The precise definition of a heavy hitter is rather subtle; depending on

the traffic context, a given flow (e.g. video transmission) may be perceived as a heavy hitter

in light traffic conditions, while it may be in fact a ‘typical’ event in normal traffic conditions.

Here, we adopt a statistical perspective, where we flag hash-bins as heavy hitters, if their signal

exceeds a given quantile of a baseline probability distribution, i.e., we view heavy hitters as

‘outliers’. In order to be adaptive to changing traffic conditions, we shall dynamically and

robustly estimate the baseline probability model from the data. Our notion of heavy hitters

depends on the probability associated with the quantile threshold. This tuning parameter may

be set depending on how sensitive we would like to be to ‘alarms’.

Let Xt = {Xt(i)}mi=1, t = 1, 2, · · · be sequence of hash-binned traffic arrays. In the case

of the source IP signal, for example, Xt(i) corresponds to the column-sum of the databrick

matrix and represents the number of bytes originating from all source IPs ω hashed to bin i,

i.e. h(ω) = i over the time-window t. Figure 2 (middle) shows an example of such array. The

process of hashing effectively randomizes traffic flows in different bins, and therefore, the entries

Xt(i), i = 1, . . . ,m may be reasonably assumed to be statistically independent and identically

distributed (i.i.d.).

Our goal is to identify and flag the presence of abnormally large (heavy) traffic. One way

that this manifests itself is through abnormally large values of Xt(i)s, for some i’s. To this end,

we consider the sample maximum of the hash-array:

Dm(Xt) := max
i=1,...,m

Xt(i). (2)

We shall identify a bin i ∈ {1, . . . ,m} as a heavy hitter, if its value is large, relative to an

asymptotic approximation to the distribution of the sample maximum.

Proposition 1. Let X(i), i = 1, . . . ,m be i.i.d. random variables with heavy tails as in (1).

Then, as m→∞, we have that

1

m1/α
Dm(X) ≡ 1

m1/α
max

i=1,...,m
X(i)

d−→ c1/αZα, (3)



where P(Zα ≤ x) = e−1/xα has the standard α-Fréchet distribution and c is the asymptotic

parameter in (1).

This result is a simple consequence of Theorem 3.3.7, p. 131 in [45]. For completeness, its

proof is given in the Appendix.

Relation (3) suggests that for relatively large values of m, we can use the limit α-Fréchet

distribution to calibrate the detection of heavy hitters. Specifically, given a sensitivity level p0

(e.g. equal to 0.95 or 0.99), we flag the bin i as a heavy hitter, if

Xt(i) ≥ Tp0(m,α, c) := m1/αc1/αΦ−1
α (p0) =

( c

log(1/p0))

)1/α

, (4)

where Φ−1
α (p) = (log(1/p))−1/α, p ∈ (0, 1) is the inverse of the standard α-Fréchet cumulative

distribution function Φα(x) = e−1/xα , x > 0. This way, in practice, under normal traffic

conditions, the probability of flagging any bin in time-slot t as a heavy hitter is no greater

than (1− p0). The rate of potential false alarms, may be controlled and reduced by judiciously

increasing the level p0. On the other hand, the presence of abnormally large bins relative to the

reference distribution will be flagged if their values exceed the threshold Tp0(m,α, c).

To be able to use this methodology, one should estimate the key parameters α and c appearing

in formula (4). The recently proposed max-spectrum method in [44] is particularly well-suited to

this task. It is easy to tune, robust to outliers, computationally efficient, and it provides estimates

of both the scale parameter c and the tail exponent α. This methodology is summarized in the

formal algorithm (Algorithm 1).

Remark 1. The hash-array is obtained from the PF RING-based methodology at the time scale

of one array per several seconds. For the traffic conditions in the Merit Network (e.g. rates of

10Gbps), we found that time-windows of 10 seconds provide sufficiently well-populated bins

that lend themselves to reasonable heavy-hitter detection. In this setting, we output estimates of

heavy hitters every 10 seconds. For greater traffic rates, hash-binned arrays are populated faster

and our methodology can be applied at an even shorter, sub-second time-scale.

Remark 2. Proposition 1 is an asymptotic result. In our experiments with real traffic data, we

found the approximation based on the Fréchet distribution to be reasonably accurate for m as

low as 128 and durations about 10 seconds.



Algorithm 1: Fréchet method
Input: Stream of hash-arrays Xt = {Xt(i)}mi=1;

probability level p0 ∈ (0, 1);

smoothing coefficient λ ∈ (0, 1).

Output: Stream of significant heavy-hitter bins

Ht ⊂ {1, . . . ,m} and their counts kt = |Ht|.

1: for each stream item Xt do

2: Estimate the tail exponent α̂ := α(Xt) and scale

coefficient ĉ := c(Xt) from the sample

Xt = {Xt(i)}mi=1 based on the max-spectrum.

3: if (t = 1) then

4: Set αt := α̂ and ct := ĉ

5: else

6: Perform EWMA smoothing:

αt := λα̂+ (1− λ)αt−1 and

ct := λĉ+ (1− λ)ct−1.

7: end if

8: Compute the significance threshold

Tt := Tp0(m,αt, ct) using (4).

9: Estimate the set of heavy hitter

bins Ht at window t as

Ht :=
{
i ∈ {1, . . . ,m} : Xt(i) ≥ Tt

}
.

10: return Ht and kt := |Ht|.

11: end for

Algorithm 2: Relative volume
Input: Stream of hash-arrays Xt = {Xt(i)}mi=1; probability

level p0 ∈ (0, 1); candidate value k ∈ {1, . . . ,m}

(preferably � m); smoothing parameter λ ∈ (0, 1).

Output: Binary stream of alarm-flags ft ∈ {0, 1}.

1: for each stream item Xt do

2: Estimate the tail exponent α̂ := α(Xt) from the

sample Xt = {Xt(i)}mi=1.

3: if (t = 1) then

4: Set αt := α̂

5: else

6: Perform EWMA smoothing:

αt := λα̂+ (1− λ)αt−1.

7: end if

8: Compute the relative volume of of the top–k bins

Vt(k) as in (5).

9: Using Monte Carlo simulations, compute numerically

the significance threshold qt = qt(p0; k, αt,m), such

that

P(Wαt(k,m) ≤ qt) ≈ p0.

10: return ft := I{Vt(k) > qt}, i.e., flag Vt(k) as

significantly large (at level p0) if Vt(k) > qt.

11: end for

C. Detection via Relative Volume

Alternatively, one can detect high-impact events by monitoring the volume of the top-hitters

relative to the total traffic. As before, suppose that Xt = {Xt(i)}mi=1 is a hash-binned array of

traffic volume (in bytes) computed over a given time window.

Sort the bins in decreasing order, so that Xt(i1) ≥ · · · ≥ Xt(ik) ≥ · · · ≥ Xt(im) ≥ 0. Fix a

k ∈ {1, . . . ,m} and consider the relative volume of traffic contributed by the top-k bins:

Vt(k) :=

∑k
j=1Xt(ij)∑m
j=1Xt(ij)

. (5)

Note that the indices of top-k bins can change from one time-window to the next.

We aim to identify when Vt(k) is ‘significantly’ large. For example, if k = 1, one would like

to know if the top bin suddenly carries a very large proportion of the traffic relative to the rest.



This could indicate an anomaly in the network. As in the previous section, we will measure

significance relative to a baseline probability model, which is dynamically estimated from the

data. The ubiquitous heavy-tailed nature of the Xt(i)’s will play a key role.

Let now X(i), i = 1, . . . ,m be i.i.d. non-negative random variables representing a generic

hash-binned traffic array. As argued in the previous section, in a wide range of regimes, the

distribution of the X(i)’s is heavy tailed, and they may be assumed independent because of the

pseudo-randomization due to hashing. Thus, as in (1), we shall assume that F (x) ≡ 1−F (x) =

P(X(1) > x) ∼ c/xα, for some c > 0 and α > 0. It is well-known that if the distribution function

F is continuous, then U(i) := F (X(i)), i = 1, . . . ,m are i.i.d. Uniform(0, 1). Therefore, the

Rényi representation for the joint distribution of the order statistics (p. 189 in [45]), implies(
X(ik)

)m
k=1

d
=
(
F
−1
( Γk

Γm+1

))m
k=1

. (6)

This yields the following result about the distribution of the relative volume.

Proposition 2. (i) Under the above assumptions, we have

{V (k;m), k = 1, . . . ,m} d
=
{∑k

j=1 F
−1

(Γj/Γm+1)∑m
j=1 F

−1
(Γj/Γm+1)

, k = 1, . . . ,m
}
. (7)

(ii) Under (1), for fixed 1 ≤ k < `, we have, as m→∞,

V (k;m)

V (`;m)

d−→ Wα(k, `) :=

∑k
j=1 Γ

−1/α
j∑`

j=1 Γ
−1/α
j

. (8)

The proof is given in the Appendix. Recall that our goal is to test whether V (k;m) is

significantly large. The asymptotic result in (8) suggests that the distribution of the statistic

Wα(k, `) can be used as a baseline model. Note however that it quantifies the magnitude of

V (k,m) relative to V (`,m) for some fixed `. In practice, in the context of network traffic

hash-binned arrays we studied, it turns out that V (`,m) ≈ 1 for moderately large values of

`. Therefore, the denominator in the left-hand side of (8) can be taken as 1. Further, to be

slightly conservative, one can take ` = m. We therefore obtain the distributional approximation

V (k;m)
d
≈ Wα(k,m) :=

∑k
j=1 Γ

−1/α
j∑m

j=1 Γ
−1/α
j

. Note that this approximation is in fact valid exactly, if

F (x) = c/xα, x ≥ c1/α, i.e. under the Pareto model. This discussion leads to Algorithm 2.



Remark 3. In scenarios where the Pareto approximation is not as accurate, one can adapt

the above algorithm by considering ` < m and test the contribution of ratios of volumes

V (k;m)/V (`;m), relative to the baseline distribution of Wα(k, `). As indicated above, for

simplicity, and to be slightly conservative in practice, we use ` = m, which worked rather well.

The significance threshold qt in Algorithm 2 may fluctuate substantially in time, since the

tail exponent αt does (see, e.g. Figure 5 in [46]). This natural adaptivity property allows us

to dynamically calibrate to the changing statistical properties of the stream. It is important,

however, to be also robust to sudden changes of regime due to the onset of anomalies, i.e., we

should not adapt to the anomalies we are trying to detect. Such robustness can be achieved and

tuned by the smoothing parameter λ. The smaller the value of λ, the closer the αt to past values

αs, s ≤ t. Some degree of smoothing can also improve estimation accuracy through borrowing

strength from the past. In practice, we found that λ ≈ 0.5 works well in our conditions.

If the type of anomalies considered persist over several windows of time ∆, one can substan-

tially decrease the false alarm rate by considering control charts. This leads to a slight modifica-

tion of Algorithm 2. Following [47], one can consider the p-values, pt := P(Vt(k) > Wαt(k,m)),

and then apply an EWMA on the z-scores: zt := λpΦ
−1(1 − pt) + (1 − λp)zt−1, for another

weight λp ∈ (0, 1). Then, under baseline conditions, zt follows the Normal distribution with

zero mean and variance σ2
z = λp/(2−λp). Thus, classical process control methodology suggests

to raise an alarm if zt/σz > L, for a given level parameter L > 0 [13]. The pair of parameters

(λp, L) can be tuned so as to ensure detection of persisting anomalies, while minimizing false

alarms. Section V includes studious sensitivity analyses of these calibrations controls.

D. Community Detection

Consider now the two-dimensional matrix Xt = {Xt(i, j)}mi,j=1 of updates, obtained for a

certain time t. The technique proposed next aims at detecting changes in the community structure

of the network flows. To this end, focus on the top N bins of Xt(i, j), i, j = 1, . . . ,m, which

represent an aggregate summary of the top origin-destination flows in the network.

Let At = (at(i, j))m×m be a binary matrix, such that at(i, j) = 1 if and only if bin (i, j)

belongs to the set of top N items in the array Xt. One can view At as an adjacency matrix of

an oriented graph Gt, which is a type of a histogram of the underlying (rather sparse) graph



of flows from a given sIP to a dIP that are active over the time-window of interest. Changes

in the connectivity of Gt indicate changes in the community structure of the traffic flows. For

example, in the event of a DDoS or other distributed attacks, a given destination IP ω0 is flooded

with substantial amount of traffic from multiple source IPs. If a large number of sources are

involved, then this will likely result in a horizontal strip of relatively large values in the two-

dimensional hash-binned array. The location of the strip will be i0 := h(ω0)—the index of the

bin where the target destination IP ω0 is hashed (see, e.g. Figures 7 and 8 for visualizing the

‘Tor’, ‘SSH-scanning’ and ‘SSDP’ attack events).

One way to formally and automatically detect such features is to focus on the graph with

adjacency matrix At. In this event, the matrix At will have a relatively larger number of 1s in

the i0th row and, correspondingly, the in-degree of node i0 will be large. We propose a statistical

method for quickly identifying significant peaks in the in-degrees (or out-degrees). This method,

combined with the information from the Boyer-Moore MJRTY instances associated with the

bins involved can lead to an almost instantaneous identification of possible targets as well as

(potential) culprits of malicious activities.

Focus on ingress connectivity, i.e., let It(i) :=
∑m

j=1 at(i, j), i = 1, . . . ,m be the in-degree

associated with node i for the oriented graph Gt. Our goal is to flag statistically significant

peaks of It(i). As argued in Sections IV-B and IV-C, hashing ensures randomization and hence

It(i), i = 1, . . . ,m can be reasonably assumed to be independent. In contrast with the previous

sections, however, the distribution of the counts It(i) are no longer heavy-tailed but rather well-

approximated by a Normal distribution. For a fixed i, thanks to the randomization induced by

hashing, one can view at(i, j)’s as independent in j. Hence, for relatively large m, as well

as N and ultimately traffic rate, the CLT ensures that centered and normalized integer counts

It(i) can be modeled by the Normal distribution. Indeed, Figure 4 (right panel, top-right plot)

shows Normal quantile-quantile plots of It(i), t = 1, . . . , T for 5 typical (non-anomalous) bins

i. The linearity in the plots indicates agreement with the Normal distribution. The heatmap

therein (top-left) shows the entire array (It(i))m×T of in-degrees computed over 10-second time

windows over the duration of 1 hour. We focused on the top N = 3000 flows. The bottom

plots in this figure show the QQ-plots corresponding to anomalous bins with high in-degree



corresponding to the higher intensity lines in the top-left plot.

Given the above discussion, in the baseline regime, we shall assume that It(i), i = 1, . . . ,m

are independent N (µt, σ
2
t ). Then for Dt := maxi=1,...,m It(i), by the independence of the It(i)’s,

we obtain P(Dt ≤ x) = Φ
(
x−µt
σt

)m
, where Φ is the standard normal CDF. Fix a probability level

p0 (e.g. 0.99), and consider the significance threshold ut(p0) ≡ u(p0,m, µt, σt) := µt+σt×p1/m
0 .

Thus, in the baseline regime, all in-degrees It(i), i = 1, . . . ,m lie below ut(p0) with probability

p0. As in Section IV-B, we shall flag all bins i, for which It(i) exceeds ut(p0) as anomalous.

The detection algorithm is analogous to Algorithm 1, except that now one should estimate the

parameters µt and σt. This can be similarly done using an EWMA of the empirical means and

standard deviations of the samples It(i), i = 1, . . . ,m. We omit the details to avoid repetition.

This method is illustrated in Section V, where it is successfully employed in mining seemingly

harmless events characterized by high node-connectivity (e.g., the ‘SSDP’ and ‘Tor’ cases).

These events are harder to detect via the methods described in Sections IV-B and IV-C.

Remark 4. Observe that the access to various cloud services and resources can have similar

characteristics, where multiple source IPs communicate with a single destination IP (server).

Such servers, however, are typically well-known and can be a priori filtered out. An alternative

application of this methodology is to track the up-surge of users to a particular service, such

as Twitter, Facebook or Google, for example. Such up-surges, not necessarily due to malicious

activity, may be of interest to network engineers or researchers.

V. PERFORMANCE EVALUATION

A. Software performance

The excellent performance of PF RING is well documented [40], [41]; this section focuses

instead on our monitoring application. We perform measurements in situations where AMON

is deployed in the field, and under heavy stress-testing with a traffic generator appliance.

Figure 1b (right) illustrates our software capabilities when monitoring traffic at Merit’s main

peering point in Chicago. Our setting involves a passive monitor (i.e., packet tap) receiving traffic

from four SPAN 10GE ports. The mirrored traffic includes both ingress and egress network

traffic, and a 5-day snapshot of aggregate volume is shown in Figure 1b. Note that traffic

rates are well above 20Gbps; however, AMON monitoring traffic from all four 10GE ports



simultaneously, experienced minimal packet drops (below 1.5%). Further, the amount of physical

memory required by our application was only around 40MB, something expected from the low

space complexity of the Boyer-Moore algorithm [39].

To shed more light into this, we undertook performance tests using a traffic generator with

40 byte payload packets (i.e., sending at the minimum frame of 64 bytes). At wire-speed of

10Gbps we measured throughput that exceeded 12 Mpps (million packets per second). This

corresponds to a drop rate of 18%; testing with payloads of size 96 and above showed zero loss

at wire speeds. We conjecture that the bottleneck seems to be the buffer size of the NIC card

we used, and not PF RING. In particular, the Intel card we tested has buffers of size 4096, and

hence packet drops seem to be inevitable at these rates.We are in the process of conducting

tests on cards with larger buffers in order to verify our hypothesis.

B. Identification accuracy

Next, we demonstrate the identification accuracy of MJRTY Boyer-Moore; we perform com-

parisons against Combinatorial Group Testing (CGT) [19]. We utilize an hour-long NetFlow

dataset, collected at Merit, with 92 million flows and an aggregate volume of 447 GBytes and

around 580 million packets. Both methods are evaluated against the ground truth (i.e., exact

recovery of top-K hitters). All methods report their answers every 100,000 NetFlow records;

Table II illustrates the average proportion of identified heavy hitters among the top-K and the

standard error (in parenthesis). The chosen data contain a low-volume DDoS attack attributed

to the Simple Service Discovery Protocol (SSDP); see Figure 8 (left).

The CGT method [19] is a probabilistic technique, based on the ideas of ‘group testing’. It

aims at finding the elements whose volume is at least 1/(k + 1) of the total; this is a relaxed

version of the top-K hitters problem. The authors provide performance guarantees with respect

to accuracy, space and time. It is suited for high-speed streaming data; indeed, besides its offline

evaluation on accuracy, we have implemented the method in the AMON framework and verified

its time and space efficiency. Its online realization demonstrated results similar to Figure 1b.

For the results of Table II we sought the top source IPs per interval. The tuning parameters for

CGT include the hash-table size W , and the number of groups T (in all experiments, T = 2;

increasing T improves accuracy but worsens the efficiency on real-data). The granularity unit b



TABLE II: Identification; comparison with Combinatorial Group Testing (CGT) [19].
Top-K hitters BM (m=512) BM (m=1024) CGT (k=500,W=1024) CGT (k=1000,W=2048) CGT (k=2000,W=4096)

K=10 (packets) 0.99(0.04) 0.99(0.03) 0.91(0.10) 0.91(0.10) 0.89(0.09)

K=10 (bytes) 0.99(0.03) 0.99(0.03) 0.79(0.14) 0.85(0.12) 0.86(0.11)

K=50 (packets) 0.94(0.04) 0.98(0.02) 0.90(0.07) 0.90(0.05) 0.90(0.04)

K=50 (bytes) 0.96(0.03) 0.98(0.02) 0.80(0.11) 0.89(0.06) 0.90(0.05)

K=100 (packets) 0.85(0.05) 0.94(0.03) 0.60(0.11) 0.89(0.05) 0.90(0.03)

K=100 (bytes) 0.90(0.03) 0.96(0.02) 0.58(0.09) 0.86(0.09) 0.92(0.04)

K=200 (packets) 0.71(0.05) 0.87(0.03) 0.30(0.06) 0.76(0.12) 0.91(0.03)

K=200 (bytes) 0.77(0.04) 0.90(0.02) 0.29(0.05) 0.48(0.08) 0.78(0.13)

(see [19], Sec. 3.3) is set to b = 8 for better efficiency, at the expense of space in memory.

The MJRTY BM is regulated with the number of sub-streams, m. Note that, regarding space

utilization, hashing with size m = 1024 corresponds to the CGT case W = 1024. In all cases,

we used W ≥ 2k, per Lemma 3.3 in [19]. The results of Table II showcase that MJRTY BM is

highly accurate in finding the most frequent elements of the stream. It also often outperforms

its competitor. CGT’s performance can increase with elevated values of W and T at expense

of space and, most importantly, time. However, MJRTY BM can increase its accuracy too

by stretching m. Finally, we note that CGT, being a probabilistic algorithm, may output IP

elements that are not present in the stream (due to hash collisions). Conversely, MJRTY BM is

not susceptible to this.

C. Detection accuracy

We shed light into the detection accuracy of our methods by considering real-world DDoS

case studies as well as synthetic attacks injected on real data. The studied attacks were recorded

at Merit’s NetFlow collector. The first event, labeled as ‘Library’ case study, involved heavy

UDP-based DNS and NTP traffic to an IP registered to a public library in Michigan, and is

considered a volumetric attack (see Figure 6). The second event, named ‘SSDP’, is a low-volume

attack directed to another host within the network (see Figure 8, left).

We implemented the Defeat [26] subspace method and juxtapose its performance against

our algorithms on the two attacks. Defeat checks for anomalies using principal component

analysis (PCA). A dictionary of entropies is built, over moving windows, of distributions of

certain signature signals involving source and destination ports and IP addresses. In Defeat,



abnormalities are viewed as unusual distributions of these features. The Defeat framework is

well-suited for multi-dimensional data due to its sketch-based design, and can be utilized for

detection, identification and classification of attacks. However, its requirement for construction

of empirical histograms makes it less appealing (if any feasible at all) for online realization.

Table III tabulates our analyses. We report two metrics, namely precision and recall. Precision

depicts the fraction of alerts raised that are indeed relevant, and recall captures the ratio of actual

anomalies that were detected. The ground truth (i.e., instances that the attack was ongoing)

was obtained by offline data analysis that revealed the times when the target IPs and the

corresponding protocol ports ranked among the top-10. Again, we considered time windows

of 100,000 flow records. Due to the fact that additional attacks unknown to us might be present

in the data, the precision criterion should be interpreted as a worst-case, lower bound.

The Defeat method was calibrated by the significance level α (necessary for its monitoring

statistic threshold) and the number of ‘votes’ raised by Defeat’s internal detection processes. A

sketch of size 484 was employed. For our system, we ran all three detection methods and reported

their results; we also demonstrate the overall AMON accuracy by accounting the union of alerts.

As illustrated in Table III, both Defeat and AMON perform remarkably well on ‘Library’. Recall

that this event is a voluminous one, and hence both techniques can easily detect it. On the other

hand, the ‘SSDP’ case is a harder one (see Figure 8). Defeat reports true alerts for a higher

time fraction, and both methods show consistent and similar false positive rates. The fact that

Defeat checks for more traffic features than our methods seems to be the explanation of its

higher attack discovery rate. However, we emphasize that AMON indeed rapidly uncovered the

underlying event during its period of appearance. Further, it is extensible and adding monitoring

features like source and destination ports into its design is straightforward.

The Defeat method works well but is rather sophisticated and requires a training period. This

training process is computationally intensive and has to be performed offline. Moreover, the

construction of signal distributions and entropy calculations, required to run the PCA-based de-

tection requires very large memory structures, which do not scale well in real network conditions.

Making this method work in real-time requires a formidable and independent effort. Further,

finding a sufficiently long, anomalous-free period that satisfies the stationarity assumption might



TABLE III: Detection accuracy; comparison with Defeat [26].
(a) The Library case study

Method Prec. Recall

Defeat (α = 0.01) 0.95 0.94

Defeat (α = 0.001) 0.80 0.95

Fréchet (p = 0.95, λα = 0.6) 0.89 0.22

Rel. Vol. (λp = 0.6, L = 1.64) 0.80 0.48

Connectivity (p = 0.9999) 0.74 0.95

AMON (all methods) 0.94 0.93

Fréchet (p = 0.85, λα = 0.6) 0.65 0.41

Rel. Vol. (λp = 0.6, L = 1.64) 0.80 0.48

Connectivity (p = 0.9999) 0.74 0.95

AMON (all methods) 0.94 0.93

Fréchet (p = 0.95, λα = 0.6) 0.89 0.22

Rel. Vol. (λp = 0.6, L = 2) 0.80 0.29

Connectivity (p = 0.9999) 0.74 0.95

AMON (all methods) 0.95 0.93

(b) The SSDP case study

Method Prec. Recall

Defeat (α = 0.001, 9 votes) 0.35 0.80

Defeat (α = 0.001, 10 votes) 0.31 0.21

Fréchet (p = 0.95, λα = 0.6) 0.40 0.03

Rel. Vol. (λp = 0.6, L = 1.64) 0.47 0.12

Connectivity (p = 0.9999) 0.34 0.45

AMON (all methods) 0.33 0.46

Fréchet (p = 0.85, λα = 0.6) 0.36 0.13

Rel. Vol. (λp = 0.6, L = 1.64) 0.47 0.12

Connectivity (p = 0.9999) 0.34 0.45

AMON (all methods) 0.33 0.47

Fréchet (p = 0.95, λα = 0.6) 0.40 0.03

Rel. Vol. (λp = 0.6, L = 2) 0.52 0.06

Connectivity (p = 0.9999) 0.34 0.45

AMON (all methods) 0.34 0.46

be challenging. Its adaptability in dynamically changing traffic conditions is another concern.

In contrast, our methods are highly adaptive to traffic trends and require no training.

To grasp insights into AMON’s sensitivity to various tuning parameters we can study Table IV

and Table V. For this evaluation, we utilized data collected during a seemingly ordinary period.

We randomly injected attacks of various magnitudes at 5 times; the injected traffic volume occurs

directly on the databrick matrices. We first considered the scenario of many sources sending

traffic to one destination. In this scenario, one databrick row is ‘inflated’ by the synthetic attack

magnitude at 5 random instances. The algorithm input was the destinations hash-binned arrays

(see Figure 2), and we allowed a grace period of 3 minutes for detection. Each individual

experiment was repeated 50 times and we report the average performance in terms of precision,

P
(1)
d , and recall, R(1)

d ; sub-script ‘d’ denotes that the algorithm input was the destinations’ signal.

We also considered the scenario of one source communicating with multiple destinations (see

P
(2)
s and R(2)

s ), and the case of several sources to various destinations (rightmost four columns).

Table IV tabulates results for Algorithm 1, which is tuned by the significance level p0 = p and

the smoothing parameter λ = λα. Best performance is achieved with p = 0.95 and λα = 0.50.

Note that p may be calibrated to ease the false alarm rate. Further, observe the connection



TABLE IV: Fréchet method (Algorithm 1)

p λα Gbps P
(1)
d R

(1)
d P

(2)
s R

(2)
s P

(3)
s R

(3)
s P

(3)
d R

(3)
d

0.95 0.50 0.50 0.74 1.00 1.00 0.96 1.00 1.00 0.74 1.00

0.95 0.50 1.50 0.73 1.00 1.00 1.00 1.00 1.00 0.74 1.00

0.95 0.50 2.50 0.73 1.00 1.00 0.98 1.00 1.00 0.74 1.00

0.95 0.60 0.50 0.72 0.93 1.00 0.61 1.00 1.00 0.85 1.00

0.95 0.60 1.50 0.74 0.99 1.00 0.88 1.00 0.99 0.85 0.99

0.95 0.60 2.50 0.73 1.00 1.00 0.92 1.00 1.00 0.85 1.00

0.99 0.50 0.50 1.00 0.73 0.74 0.22 1.00 1.00 1.00 0.99

0.99 0.50 1.50 1.00 0.94 0.98 0.50 1.00 1.00 1.00 1.00

0.99 0.50 2.50 1.00 0.97 1.00 0.71 1.00 0.99 1.00 0.99

0.99 0.60 0.50 0.76 0.24 0.36 0.09 1.00 1.00 1.00 1.00

0.99 0.60 1.50 0.92 0.40 0.08 0.02 1.00 1.00 1.00 1.00

0.99 0.60 2.50 1.00 0.55 0.16 0.04 1.00 1.00 1.00 0.99

between robustness and adaptivity as dictated by λα. Recall that this parameter is used to

smooth the heavy-tail exponent, α. Big traffic spikes translate to a heavier distribution tail and

thus a low α; this could make our scheme too insensitive/conservative if we do not have an

adaptive scheme that accounts for ‘historical’ α’s. On the other hand, high α can make our

scheme too sensitive (i.e., many false positives). Table V illustrates the detection performance

of a modification of Algorithm 2, which utilizes EWMA control charts on z-scores, as explained

at the end of Section IV-C. We employ our methodology for the EWMA (λp, L) pairs shown

and λ = λα was fixed to 0.5. For this evaluation, our synthetic attacks were persistent for 5

consecutive time slots (i.e., 50 seconds). Users can tame the alert rate by increasing the control

limits with a higher L and/or decrease further λp.

In addition, we undertook sensitivity analysis with respect to various choices of monitoring

intervals used to generate databrick matrices. Table VI illustrates that at the relevant time-scale

of interest (e.g., few seconds), detection accuracy remains relatively unchanged. For optimal

performance, very brief aggregation intervals for low-traffic links are discouraged because the

hash-binned arrays will be sparse. Similarly, very large aggregation levels (e.g., minutes) are also



TABLE V: Relative volume method (Algorithm 2)

L λp Gbps P
(1)
d R

(1)
d P

(2)
s R

(2)
s P

(3)
s R

(3)
s P

(3)
d R

(3)
d

2.00 0.50 0.50 0.45 0.98 0.61 0.97 0.49 0.99 0.35 0.99

2.00 0.50 1.50 0.45 0.99 0.62 0.96 0.41 0.99 0.33 1.00

2.00 0.50 2.50 0.45 0.98 0.64 0.98 0.41 0.99 0.34 1.00

2.00 0.60 0.50 0.61 0.98 0.80 0.96 0.74 0.99 0.45 1.00

2.00 0.60 1.50 0.62 0.97 0.81 0.99 0.50 0.99 0.41 0.99

2.00 0.60 2.50 0.60 0.98 0.81 0.97 0.48 0.99 0.40 0.99

3.00 0.50 0.50 1.00 0.62 0.76 0.25 0.95 0.99 0.78 0.99

3.00 0.50 1.50 0.98 0.74 0.62 0.16 0.73 0.98 0.60 0.98

3.00 0.50 2.50 1.00 0.81 0.90 0.36 0.58 0.98 0.55 0.99

3.00 0.60 0.50 0.96 0.42 0.50 0.13 0.99 0.98 0.92 0.98

3.00 0.60 1.50 1.00 0.59 0.40 0.10 0.79 1.00 0.65 1.00

3.00 0.60 2.50 1.00 0.72 0.56 0.13 0.71 1.00 0.59 1.00
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Fig. 6: The ‘Library’ event. The left panel shows the time-series of the hashed-array for destinations for a period of one

hour. Note the dark horizontal stripe (at bin 82) between minutes 30 and 45 and towards the end of the hour. The adjacent

panel depicts the aggregate traffic volume over the hour of interest. Observe the elevated traffic volume and note that both the

Fréchet and the relative volume methods correctly raised alerts (red) during the malicious activity period (rightmost figures).

unwelcome since short-duration attacks might be masked by collisions with other events. Further,

the heavy-tail modeling assumption is not suitable on large time-scales (see Section IV-A).

We conclude this section be showcasing that AMON’s identification may synergistically be

coupled with the detection alerts to guide operators’ troubleshooting and mitigation efforts. By

looking at the database of heavy hitters reported by MJRTY BM, network managers can readily

have an IP list of candidate culprits. Upon detection, our algorithm outputs a databrick bin,

aimed to identify culprits. One can then examine the flows reported by Boyer-Moore of the

sub-streams associated with the relevant hash bin. For example, one first sorts these Boyer-



TABLE VI: Sensitivity on aggregation level (‘Library’ case)
Fréchet method

(p = 0.85, λα = 0.6)

Relative Volume

(λp = 0.6, L = 1.64)

Aggregation Level Precision Recall Precision Recall

200K NetFlow records 0.74 0.52 0.82 0.53

300K NetFlow records 0.76 0.73 0.87 0.70

400K NetFlow records 0.92 0.71 0.81 0.75

500K NetFlow records 0.81 0.73 0.70 0.76

TABLE VII: ‘Library’ case study: culprit identification using MJRTY Boyer-Moore.
Top-K 1 2 4 8 16 32 64 128

Fréchet method (Alg. 1) - time fraction (%) 39.7 60.3 74.0 90.4 93.2 98.6 100 100

Rel. Vol. (Alg. 2) - time fraction (%) 42.7 61.3 74.7 90.7 93.3 98.7 100 100

Moore-identified flows based on their traffic volume estimate (Pest in Algorithm 3), and then

proceeds with forensics analysis. In particular, for the ‘Library’ event, in 39.7% of the flagged

times by Algorithm 1, the top ranked flow by Boyer-Moore was indeed one of the (src, dst)

pairs of interest (see Table VII, top row). For a 60.3% fraction of times, the same detection

method was able to identify flow(s) of interest among the top-two reported BM flows, etc.

Similar reports are offered by the second detection algorithm at the bottom row.

D. Diagnosing low-volume attacks

In addition to orchestrated, volumetric attacks that seek to overwhelm the victims with traffic,

low-volume DDoS attacks can be pernicious, albeit problematic to detect. Such attacks, like the

‘SSDP’ event previously analyzed, rely on presumably innocuous message transmissions to

thwart standard anomaly detection methods. In this section, we highlight the importance of

visualizations and of methods that detect structural patterns (see Section IV-D) in traffic in

revealing these low-profile nefarious actions. As an initial example, consider Figure 8 (bottom

left). The bold horizontal line in the depicted databrick is an artifact of the distributed nature

of the ‘SSDP’ attack. Operators can easily, instantaneously and visually observe such patterns

by monitoring AMON’s live data products. Further, we reiterate the important role that the

connectivity algorithm played in automatically uncovering the ‘SSDP’ instances (see Table IIIb).

Figure 7 depicts another case study of this kind in which sparse traffic patterns (left panel)

make Algorithms 1 and 2 to miss these events. As clearly seen by the in-degree counters of



Figure 7 (middle), two possibly suspicious events are occurring. Manual inspection revealed the

first event to be UDP misuse affecting a Tor exit router within Merit, and the other (longest

running) attempts of SSH-breaking into Michigan-located servers from IPs that belong at an

autonomous system registered in the Asia-Pacific region. We refer to this case study as ‘Tor’.

The right panel illustrates that both events were flagged by our community detection system.

This plot shows the number of highly connected destinations (i.e., high in-degree) over the

duration of an hour. The correct hash bins were also reported (22 and 53).

Further, Figure 8 (right panels) demonstrates extra visualization aids readily available by

our data products; cliques and clique sizes for the sources and destinations co-connectivity

graphs are depicted. A co-connectivity graph for sources provides insights into the number

of common destinations between two sources; the destinations co-connectivity graph sheds

similar information for destinations. To obtain these (undirected) graphs we utilize the binary

matrix At = (at(i, j))m×m (see Section IV-D). The co-connectivity graph for destinations Dt is

efficiently obtained as Dt := At · ATt ; the graph for sources is St := ATt · At, where ATt is the

transpose of At. Based on the co-connectivity graphs one can obtain visualizations about the

cliques formed, over time. Figure 8 showcases two such snapshots. These graphs are portrayed

as their matrix adjacency representations, and we have re-arranged the node labeling based on

the node-degree in decreasing order (i.e., the first row represents the adjacency associations of

the node with the highest degree). Note the very large clique formed in src-to-src graph. This

depicts the situation in the ‘Tor’ case study discussed above, when a plethora of sources were

contacting the same destination (the Tor exit router). One may also extract the maximum clique

for each graph; the bottom row demonstrates this characteristic over time. The reader is pointed

to our supplement [48] for an animated version of Figure 8, where clearly one can observe the

clique sizes evolving and expanding over the duration of the ‘Tor’ event.

VI. CONCLUSIONS

The paper presents a novel open source monitoring architecture suitable for multi-gigabit

(i.e., 10Gbps+) network traffic streams. It is based on PF RING Zero-Copy and tailored for

deployment on commodity hardware for troubleshooting high-impact events that may arise from

malicious actions such as DDoS attacks. It is worth noting that the NIC needed for processing
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Fig. 8: Visualizations readily available by our data products. Left: Merit Network 10:00-12:00 EST, Dec 9, 2015 – the

faint ‘SSDP’ event (in volume) is clearly observable in the time snapshot of the databrick matrix (horizontal line). Top Right:

Adjacency matrices of co-connectivity graphs (node indices sorted by degree—black corresponds to locations of 1’s). Bottom

Right: Size of max cliques over time during the ‘Tor’ case study (Section V-D). By observing clique size changes in Dashboards

like this, coupled with the detection method of Section IV-D, such seemingly innocuous low-volume events are captured.

traffic data at speeds around 25Gbps (Figure 1b) costs roughly 800 USD, while specialized FPGA

accelerated cards or monitoring appliances cost an order of magnitude higher (above 10,000

USD). We demonstrated the performance of our system architecture and the underlying statistical

methods on selected real-world case studies and measurements from the Merit Network.

Our framework is extensible, and allows for further statistical, filtering and visualization

modules. Currently, we are in the process of deploying an interactive filtering mode of operation

that would enable network operators to zoom-in and examine IP ranges of interest in real-

time. As an example, consider the ‘Tor’ and ‘SSH-scanning’ events of Figure 7 for which

our methods automatically flagged bins 22 and 53. With the filtering option, operators can

rapidly zoom exclusively into the sub-stream of traffic that gets mapped into the flagged bins.



Note that due to randomization, these hash-bins are not associated with traditional IP-ranges

(e.g., subnets or specific IP addresses). Thus, such filters cannot be implemented using existing

filtering infrastructures such as BPF or hardware-based filters.
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APPENDIX

Proof of Proposition 1. This result is a simple consequence of Theorem 3.3.7, p. 131 in [45].

Proof: By the independence of the X(i)’s, for all fixed x > 0, we have

P(m−1/αDm(X) ≤ x) = P(X ≤ m1/αx)m = (1− P(X > m1/αx))m.

Now, by (1) with x replaced by m1/αx, we observe that P(X > m1/αx) ∼ c/(mxα), as m→∞.

Thus, using the fact that (1− cx−α/m)m → e−c/x
α
, m→∞, we conclude that

P(m−1/αDm(X) ≤ x) −→ e−c/x
α

, as m→∞.

This implies the desired convergence in (3), since P(c1/αZα ≤ x) = e−c/x
α
, x > 0.

Proof of Proposition 6.

Proof: Part (i) is a direct consequence of (6). Now, to prove (ii), observe that by (7),

V (k;m)

V (`;m)
d
=

∑k
j=1 F

−1
(Γj/Γm+1)∑`

j=1 F
−1

(Γj/Γm+1)
. (9)

By the Strong Law of Large Numbers, we have that Γj/Γm+1 ∼ Γj/m, as m → ∞, almost

surely, for all j = 1, . . . , `. Recall that ` is fixed. Thus, in view of (1), F
−1

(p) ∼ (p/c)−1/α, as

p ↓ 0, and hence for all j = 1, . . . , `, with probability one, we have

F
−1
( Γj

Γm+1

)
∼
( Γj
cΓm+1

)−1/α

, as m→∞.



This implies that the right-hand side of (9) converges almost surely to∑k
j=1 Γ

−1/α
j (cΓm+1)1/α∑`

j=1 Γ
−1/α
j (cΓm+1)1/α

= Wα(k, `),

which completes the proof of (8).
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