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ABSTRACT

Aggressive network scanners, i.e., ones with immoderate and

persistent behaviors, ubiquitously search the Internet to iden-

tify insecure and publicly accessible hosts. These scanners

generally lie within two main categories; i) benign research-

oriented probers; ii) nefarious actors that forage for vul-

nerable victims and host exploitation. However, the origins,

characteristics and the impact on real networks of these ag-
gressive scanners are not well understood. In this paper, via

the vantage point of a large network telescope, we provide

an extensive longitudinal empirical analysis of aggressive

IPv4 scanners that spans a period of almost two years. More-

over, we examine their network impact using flow and packet

data from two academic ISPs. To our surprise, we discover

that a non-negligible fraction of packets processed by ISP

routers can be attributed to aggressive scanners. Our work

aims to raise the network community’s awareness for these

“heavy hitters”, especially themiscreant ones, whose invasive

and rigorous behavior i) makes them more likely to succeed

in abusing the hosts they target and ii) imposes a network

footprint that can be disruptive to critical network services

by incurring consequences akin to denial of service attacks.

1 INTRODUCTION

Intensive and incessant Internet-wide scanning activities

have evolved significantly over the past several years pri-

marily due to two orthogonal factors: the development and

wide adoption of research tools such as ZMap [20] and Mass-

can [22] that have been enabling researchers to examine

a plethora of security and networking questions; and the

independent explosion of botnets and malware that target

Internet-of-Things (IoT) applications and hosts (e.g., Mirai

and others [33, 3, 32, 35, 47]). While the utility of innocu-
ous research scanners has been indispensable for many ap-

plications (e.g., understanding the risk profile and security

posture of networks and protocols [15, 37, 29, 6], detecting

network outages [26, 42, 44], disclosing and assessing new

vulnerabilities [19], identifying IP space usage and address

exhaustion [7, 40], studying censorship [41, 49, 43] and un-

derstanding botnets [3] and cybersecurity flaws [18, 16, 27,

48, 1]), their collective impact on the overall network traffic,

their origins, the profile of the applications/ports they target,

etc. are currently not well understood nor have been sys-

tematically quantified. A similar gap exists in understanding

the network impact and characteristics of malicious network
scanners (e.g., botnets [3] or adversaries that forage for inse-
cure Internet hosts [10]) that are heavily probing the Internet.
In this paper, we attempt to shed some light into the behavior

of both families of scanners through the lens of i) a large

network telescope and ii) traffic data (i.e., flows and packet

streams) from several vantage points of a large academic ISP,

namely Merit Network, and a campus university network,

i.e., University of Colorado; we collectively refer to these

probers as aggressive scanners (AH, for short, for “aggressive

hitters”) due to their defining characteristic of exhibiting

some sort of “excessive” behavior.

Large network telescopes or Darknets [38, 36] provide a

unique perspective for understanding macroscopic Internet-

wide activities, such as scanning [17]. Network telescopes

are instrumented to receive and record Internet-wide traffic

destined to large swaths of unused (but routed!) IP space.

In this paper, we longitudinally study a large network tele-

scope operated by Merit Network, namely the ORION Net-
work Telescope (ORION NT) [36], covering about 500,000

contiguous “dark" (i.e., unused) IPs for a period spanning

22 months (January 1st, 2021 to October 15th, 2022) to ob-

tain up-to-date insights into the characteristics of aggressive

Internet-wide scanners that reach our Darknet. We consider

three separate modalities to examine intensive scanning be-

havior (see Section 3). E.g., following the definition of “large

scans” from [17], we consider hosts that scan 10% or more of

the dark IP space to be aggressive. Using this definition, we

identify 155,010 unique IPs associated with aggressive scan-

ning in 2022 across a total of 57,334,643 unique IPs reaching

the Darknet. They contribute 540 billion packets amounting

to 65% of all packets captured in the Darknet for 2022.

To understand the network impact ascribed to these “heavy-

hitters” we integrate into our analysis flow data from Merit,

which serves upwards of one million users. Further, we exam-

ine live streams of packets at one monitoring station at the

same ISP and another station at the University of Colorado

campus network. We join the ISP datasets with the identified

hitters to measure the impact of the AH activities on the
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Table 1: Description of Datasets.

Darknet-1 Darknet-2 Flows-1 Flows-2

Packets (Billions) 1,098 833 7,560 770

Source IPs (Millions) 123 57 7 2.7

Dest. IPs (Millions) 0.475 0.475 22 10

Total Events (Billions) 26 32 - -

network in terms of packet volume. We found that AH pack-

ets contribute between 0.1–5.85% of the total ingress/egress
packets processed by core routers on a typical day; this is a

non-negligible fraction.

Our main contributions include the i) up-to-date longitu-
dinal profiling of Internet-wide “aggressive” scanners and ii)
measurable evidence that the aggregate network footprint

of these scanners is not as inconspicuous as researchers and

operators generally assume. This traffic can be disruptive to

network operators; especially traffic originating from origins

that never disclose their intents (as opposed to the seemingly

benign “Acknowledged” lists [9] that do reveal the scanning

purpose). Scanners of unspecified intent are the vast majority

of probers we categorize as “aggressive”, and can be associ-

ated with botnet propagation and nefarious reconnaissance

(e.g., see [10]). We plan to produce and share daily lists of

such scanners (using all three definitions) that the network

and “threat exchange” communities [50, 34] could subscribe

to, hoping that they can be utilized by operators to block and

mitigate this disruptive Internet background noise.

2 DESCRIPTION OF DATASETS

A. Darknet data.We analyze data from the ORION NT to

identify and then study the aggressive hitters. To study yearly

trends, we split the Darknet dataset into two parts:Darknet-

1 (spanning the entire 2021) and Darknet-2 (January 1st,

2022–October 15th, 2022). See Table 1.

Central to our analysis of Darknet data is the notion of a

darknet event. For this study, a darknet event represents a

“logical scan” such as those defined in [17, 45]. Following [17],

a logical scan summarizes the scanning activities of a source

IP appearing in the Darknet. TCP-SYN packets, UDP packets,

or ICMP “Echo Request” packets are the three traffic types we
consider as “scanning packets" [17]. A logical scan represents

the activity of a source IP associated with a particular Dark-

net destination port and traffic type. For each darknet event /

logical scan we record its start and end timestamps; an event

is considered to have ended when no packets have been seen

in the Darknet from the event’s source IP to the event’s tar-

geted destination port and traffic category for more than a

“timeout” period of around 10 minutes
1
. For each event, we

record total packets, number of unique Darknet destinations
contacted and metadata [36].

1
The timeout or “expiration” period is based on ideas from [38] (see Section

III.E, “FlowTimeout Problem”) and the intuition behind it is to avoid splitting

“long scans” into individual shorter ones. To calculate this timeout interval,

one needs the Darknet size, an assumed scanning rate and an assumed

duration for the “long scan”; we used 100pps and 2 days, respectively.

B. ISP flows. To quantify the scanners’ network impact, we

utilize ISP flows from Merit. The flows are in Netflow format

and collected with a packet sampling rate of 1:1000 at three

core Merit routers. The Netflow collectors are configured

to only sample ingress and egress traffic to/from the ISP. i.e.,

internally facing router interfaces are not included in the

flow data. We employ two datasets: Flows-1 (January 15th,

2022 to January 21st, 2022) and Flows-2 (October 1st, 2022).

C. Packet streams. To further validate the network impact

results, we also performedmeasurements onmirrored packet

streams at Merit and the campus network at the University

of Colorado (to be referred as CU). CU is not associated with

Merit (i.e., Merit does not provide upstream/transit services

to CU and the IP spaces of both networks are different),

and serves a population of 100,000 users. These non-sampled
packet streams include the majority of ingress/egress traffic

observed at a major core router at Merit (one of the three

routers we have flow data from) and all campus traffic at CU.

We examine 72 hours starting on 2022-11-28. During then,

at Merit, the monitoring station processed traffic exceeding

8 Mpps (million packets per second) and ≈ 80 Gbps. At CU,

we observed peak rates at 5 Mpps and ≈ 40 Gbps.

D. Acknowledged scanners. To obtain insights into the

seemingly benign/research scanners while also partially val-

idating our lists of detected aggressive scanners, we employ

the publicly available list of “Acknowledged Scanners” [9].

The list curator considers a scanning IP as an “Acknowledged

Scanner” (“ACKed” scanner, in short) if the scanners make

any efforts to disclose their intentions (e.g., research pur-

poses). At the moment our analysis was performed, the list

[9] makes available the source IPs of 36 unique organizations.

E. Honeypot data. To cross-validate the lists of non-ACKed

scanners (i.e., the likely miscreant ones) and shed light into

their behaviors, we employ data from GreyNoise [23]. Grey-

Noise (GN) operates distributed honeypot sensors at multiple

cloud providers meticulously placed throughout the world.

The IPs observed contacting their sensors are tagged by

the GN team via an internal process. An IP is annotated

as benign,malicious or unknown; more specific tags are also
available for some IPs. We examined GN data (with 2,962,153

unique IPs) for the whole month of June 2022.

Ethical considerations. Working with real-world traces

requires ethical and responsible data handling. Our measure-

ment infrastructure was designed with careful consideration

and follows best practices imposed by the security/privacy

boards and network managers of the organizations that op-

erate the corresponding instrumentation. For instance, all of

our datasets are passively collected and we never interact

or probe any of the identified IPs present in our datasets.

The data were analyzed in a secure manner only by the au-

thors. Moreover, we followed the “code-to-data” paradigm

for analyzing the live packet streams in which our code was
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shared with and executed by authorized personnel with ac-

cess to the mirrored data. We do not collect nor examine

any device MAC addresses or user payload, and we merely

performed packet counting (i.e., total packets originating

from AH) when examining the packet streams.

Darknet data are generally considered to pose minimal

privacy risks; however, we take measures to not expose any

identifiable information that might endanger networks or

individuals. E.g., in the analyses that follow we elected to not

publicly disclose the actual ASN and organization names that

originate AH to protect the reputation of these networks.

3 AGGRESSIVE NETWORK SCANNERS

Definition 1: Address Dispersion. We classify a source

IP appearing in our Darknet as aggressive whenever it is

involved in a darknet event that targets 10% or more dark IPs.

This definition was also employed in [17] to identify “large

scans”. We found 2,977,242 scanning events in Darknet-1 and

2,075,485 events in Darknet-2. We identified 158,681 distinct

IPs satisfying this condition in the Darknet-1 dataset and

155,010 IPs in 2022.

Definition 2: Packet Volume. The second definition is

based on packet volume. For each Darknet dataset, we com-

pile the Empirical Cumulative Distribution Function (ECDF)
for the number of packets sent per event. Using the empir-

ical distribution, we calculate the (1 − 𝛼)th-percentile, and

declare a scanner as “aggressive” whenever it participates in

an event with total packets transmitted crossing the critical

threshold. We utilized 𝛼 = 0.0001.

The thresholds that correspond to the top-0.01% events

were found to be 64,810 packets and 23,491 for Darknet-1 and

Darknet-2, respectively. The number of identified aggressive

source IPs found from this definition in 2021 was 159,159.

We noticed that these numbers are very similar to those ob-

tained using the address dispersion rule; indeed, the Jaccard
similarity score2 for the two sets of hitters is found to be 0.8.

Due to the high similarity among the two populations in the

sequel we mostly focus our attention to scanners identified

using the address dispersion definition.

Definition 3:Number ofDistinctDestinationPorts.Our

final definition is based on the number of distinct ports that

a scanning IP contacts in the Darknet in a given day. We

again source our data to obtain the ECDFs for the number

of unique ports for both years. We use the same 𝛼 = 0.0001

to find the critical threshold. The ECDFs for Darknet-1 and

Darknet-2 differ, indicating a shift towards more scanned

ports (see Izhikevich et al. [30] for a possible explanation).
For Darknet-1, we classified the IPs scanning more than or

equal to 6542 ports per day as aggressive, whereas for 2022

the threshold is 57,410 ports.

2
Given sets 𝐷𝑖 and 𝐷 𝑗 , the value 𝐽 := |𝐷𝑖 ∩ 𝐷 𝑗 |/ |𝐷𝑖 ∪ 𝐷 𝑗 | denotes the
Jaccard score, where | · | denotes the set cardinality.

4 NETWORK IMPACT

Having the lists of AH available, we now shift focus into

understanding the impact that these scanners pose to net-

works. First, we utilize flow data from Merit to measure the

collective packet volume generated by the identifiedAH and

processed by the ISP’s routers as they transit the network.

We start by individually checking flow data from three core

Merit routers. These routers collectively process more than

50% of all packets transiting Merit’s network.

Table 2 showcases the network impact imposed by ag-

gressive scanners for definition #1 (we omit results for the

second definition since that scanning population is very sim-

ilar to the one identified with the first definition; results for

definition #3 show a less pronounced impact, albeit non-

negligible, but we omit them for brevity). We report on the

total number of packets observed at a specific vantage point

originating from a source IP belonging to an identified AH.

In addition, we also include the portion of traffic that these
packets amount to with regards to all the packets that a given

router processes for the days examined. The tables highlight

a somehow unexpected result: the daily fraction of aggres-

sive scanners’ packet volume lies between 1.1− 5.85%; this is

a relatively high percentage and indicates that the impact of

aggressive scanners on network traffic is not negligible. To

rephrase, we see evidence that, on average, at least one out of
every hundred ingress or egress packets that a router processes
is a packet originating from an AH.

Table 2 illustrates that the peering arrangements in place

at the ISP directly affect the fraction of AH packets recorded

on a given router. For instance, we remark that router-1

endures the highest impact with regards to hitters identified

with the address dispersion metric; this can be explained

by the fact that definition #1 AH frequently originate from

Europe and Asia, as shown in Table 5, and router-1’s routing

policies (e.g., upstream tier-1 peers) dictate that such traffic

would enter Merit at that point-of-presence.

We next reflect further on interpreting and validating this

surprising result. We note that the higher percentages occur

on weekends, namely when the overall Merit traffic is lower.

We also speculate that content caching [21] plays a critical

role in “amplifying” the effect of network scanning. Merit has

put in place careful traffic engineering considerations to have

their users benefit from content caches (e.g., videos, etc.)

that reside within the ISP. User traffic to/from these content

caches does not traverse the 3 border routers we study here

so these packets do not contribute to the calculated ratio.

To further validate our results, and to eliminate the pos-

sibility that the high network impact might be due to some

bias arising from the sampled flow data, we next examine

the mirrored packet streams at both Merit and CU. Figure 1

illustrates the results, offering some interesting findings: i)
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Table 2: Network impact attributed to activeAH (definition

#1) as seen at the top-3 routers at Merit. We report the total

packets sent by these scanners (in billions) and the percent-

age of these packets amongst all routed packets.

Router-1 Router-2 Router-3

Date pkts / pcnt. pkts / pcnt. pkts / pcnt.

2022-01-15 (Sat) 15.2 (5.82%) 6.3 (2.84%) 4.1 (1.9%)

2022-01-16 (Sun) 20.4 (5.85%) 9.0 (3.03%) 5.4 (1.92%)

2022-01-17 (Mon) 19.4 (5.2%) 8.1 (2.24%) 5.6 (1.56%)

2022-01-18 (Tue) 15.0 (3.62%) 5.7 (1.51%) 5.6 (1.2%)

2022-01-19 (Wed) 15.1 (3.29%) 5.5 (1.37%) 5.6 (1.14%)

2022-01-20 (Thu) 14.7 (3.23%) 5.8 (1.42%) 5.3 (1.1%)

2022-01-21 (Fri) 16.1 (3.66%) 6.1 (1.56%) 5.9 (1.38%)

2022-10-01 (Sat) 7.9 (2.52%) 4.9 (1.86%) 5.6 (2.59%)

Avg (pkts/pcnt) 15.5 (4.15%) 6.4 (1.98%) 5.4 (1.6%)

This non-sampled dataset confirms that the network im-

pact at Merit (and router-1, specifically) lies around 2% (see

left panel, top row)
3
; ii) the network impact at CU is also

high, but an order of magnitude less than Merit (see right

panel, top row), hovering just shy of 0.10%. We hypothesized

that this could be an artifact of the lack of content caching

at CU which means that the monitoring station at CU sees

more video-related traffic compared to the Merit station. In-

deed, we checked with the network engineers at CU and

they verified that no content caching is present within their

network and off-net caching is provided by their upstream

ISP; iii) the instantaneous impact from AH could even ex-

ceed 7% on certain occasions (middle row panels) on both

networks, reaching even 12% at Merit; iv) as we observe on
the bottom row panels, on several 1-second intervals (shown

in red color) when the AH impact is high, overall network

traffic could also reach high levels (e.g., exceeding 6 Mpps).

This implies that AH are overwhelming the network even

during its “busy” times, and consequently network perfor-

mance might suffer due to potentially incurred packet drops

and network delays. In short, these AH collectively exhibit

behavior akin to denial-of-service attacks.

Figure 2 further corroborates the hypothesis that the net-

work impact difference between Merit and CU can be ex-

plained by the presence of content caching (or lack thereof).

The figure illustrates the instantaneous packet rates ascribed

to the identified AH at Merit (left) and CU (right) when we

normalize by their total number of /24 networks (28561 /24

nets for Merit and 291 for CU). As observed, CU is in fact

more adversely affected by the collective impact of these

scanners on a per /24 basis.

Table 3 allows us to understand the protocol behavior of

these AH, as observed at both the Darknet and Flow data

at Merit. The table illustrates the protocol distributions with

3
The (cumulative) fraction declines over time since we transition from a

weekend day to a weekday. Further, we performed this 3-day analysis using

AH for Nov. 27th, 2022, and due to DHCP churn (see [50]) some AH IPs

might have become obsolete by the second and third days of the analysis.

2.0

2.5

AH
 C

um
ul

. P
or

tio
n 

(%
)

5

10

AH
 In

st
an

t. 
Po

rti
on

 (%
)

AH packet fraction
1-sec intervals when AH impact above 4.55% (95-pctl)

11-28-22 11-29-22 11-30-22 12-01-22
Time (UTC)

2

4

6

8

Tr
af

fic
 V

ol
um

e 
(M

pp
s) Rate (pps)

1-sec intervals when AH impact above 4.55% (95-pctl)

0.06

0.08

0.10

0.12

0.14

AH
 C

um
ul

. P
or

tio
n 

(%
)

0

1

2

3

AH
 In

st
an

t. 
Po

rti
on

 (%
)

AH packet fraction
1-sec intervals when AH impact above 0.37% (99.9-pctl)

11-29-22 11-30-22 12-01-22
Time (UTC)

2

4

Tr
af

fic
 V

ol
um

e 
(M

pp
s)

Rate (pps)
1-sec intervals when AH impact above 0.37% (99.9-pctl)

Figure 1: Network impact (for def. #1AH) observed using packet data. Left: Merit im-

pact. Right: CU impact. Top row show the fraction of packets observed at the monitoring

station when packets are counted in a cumulative manner (i.e., from start of experiment).

The center row shows the instantaneous impact. Bottom row shows the instantaneous

rates; note that on certain occasions (instances highlighted in red), high AH network im-

pact coincides with instances of high overall network traffic rates (in Mpps).
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Figure 2: Normalized AH packet rate by /24s subnets.

Table 3: Protocols in Darknet (D) and Flow (F) for 2022-10-

01.

Router-1 Definition #1 Definition #2 Definition #3

Protocol D (%) / F (%) D (%) / F (%) D (%) / F (%)

TCP-SYN 90.4 / 90.4 88.9 / 89.7 98.2 / 98.7

UDP 9.4 / 8.6 10.8 / 9.2 1.1 / 0.6

ICMP Ech Rqst 0.2 / 0.1 0.4 / 0.2 0 / 0.2

respect to packet volume. It suggests that the actions of

the AH are similar across both datasets, indicating that the

high volume of packets we observe originating from them

in the flow (and packet) data is indeed due to scanning and

not attributed to other legitimate user behavior originating

from the same IPs that are found to perform scanning.

Table 4 shows the network impact that scanners that can

be classified as “Acknowledged” bear onto the network. The

tabulated data suggest that “seemingly benign” scanning

activities contribute a relatively high toll on the routers. The

results are for the Flows-2 dataset (October 1st, 2022).

5 SCANNERS CHARACTERIZATION

Next, we longitudinally study the identified scanners and

attempt to characterize them (e.g., their origins, top ports

targeted, etc.). Figure 3 shows time-series for definition #1.
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Table 4: Network impact attributed to ACKed scanners. We

report total packets sent by ACKed (in billions) and their

fraction amongst all ingress/egress packets.

Router-1 Router-2 Router-3

Definition # 1 3.17 (1.01%) 2.42 (0.92%) 5.47 (2.52%)

Definition # 2 3.35 (1.06%) 3.13 (1.19%) 5.55 (2.56%)

Definition # 3 0.5 (0.16%) 2.83 (1.08%) 0.59 (0.27%)
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Figure 3: Temporal trends (definition #1, address disper-

sion).

The left panel shows the number of activeAH per day (which

includes AH that may have started scanning prior to that

day), the number of unique daily AH (i.e., ones that started

their scanning efforts during that day), and the number of

all active and daily scanners. The lines for the latter two

scanner numbers seem to coincide because their values are

very similar; their average difference is only 8,471 IPs. The

right panel shows the number of packets transmitted by the

number of daily scanners in a given day, juxtaposed with

the aggregate Darknet scanning packets. Due to the darknet
events data format, we can only calculate packet statistics

for daily scanners.

The plot shows that the number of aggressive scanners

increases over time. On average, we found 1452 (3876) daily

(active) hitters per day in 2021, whereas there are 1779 (5349)

daily (active) hitters per day in 2022. Figure 3 (right) depicts

that the identified hitters contribute the vast majority of

packets seen in the Darknet. We observe that on average

around 0.1% of scanning IPs appearing in the Darknet and

corresponding to AH are responsible for over 63% of the

total packets captured per day in ORION NT.

Next, we discuss the origins of AH. We characterize the

type of Autonomous Systems (AS) that originate these scan-

ners, and the country of origin. Table 5 tabulates the top-10

networks and the countries associated with definition #1AH.

(Numbers in parentheses indicate ACKed scanners.) We also

studied the origins of AH based on the other two definitions;

for space economy, we omit these tables, but we point out

that the origins for the first two definitions are very similar,

echoing the previous observations that scanners from the

first two definitions (address dispersion and packet volume)

largely overlap. On the other hand, the origins for the third

group differ, and we even see the presence of research insti-

tutions. Notably, a certain US-based cloud provider ranks top

Table 5: Origins of aggressive scanners for definition #1.

Darknet-1 (2021) Darknet-2 (2022)

AS Type unique /32s unique /24s Pkts (B) AS Type unique /32s unique /24s Pkts (B)

Cloud (US) 37360 (3799) 7041 (82) 65.8 Cloud (US) 29933 (3626) 6601 (67) 67.2

Cloud (CN) 11514 7264 21.8 ISP (CN) 19085 10128 8.5

ISP (CN) 6791 5795 3.4 ISP (CN) 9908 7910 4.8

Host. (CN) 6479 4479 8.4 Cloud (CN) 8777 6130 19.4

ISP (TW) 3753 3011 1.4 ISP (KR) 8228 7399 3.7

ISP (CN) 3601 2895 4.4 Host. (CN) 6657 4551 11.2

ISP (RU) 2708 574 0.3 ISP (TW) 5771 4099 2.6

ISP (US) 2411 2166 0.2 Cloud (US) 3304 2955 2.5

Cloud (US) 2364 (250) 1258 (98) 4.8 Cloud (US) 2891 (54) 1222 (17) 3.8

Cloud (US) 2248 2103 2.6 Cloud (US) 2244 2047 1.5

Total (%) 79229 (50%) 36529 (37%) 113.1 (15%) 95090 (61%) 52226 (54%) 125.1 (23%)

Table 6: Validation via “ACKed Scanners” lists [9].

Address Dispersion Packet Volume Total Ports

2021 2022 2021 2022 2021 2022

IP match 766 766 523 762 317 29

Domain matches 4672 4382 4334 5513 71 31

Total IPs 4706 4418 4350 5549 325 31

Packets (Billions) 158.3 130.9 152.5 145.2 29.0 5.7

Packets (% all AH) 20.4 24.1 19.9 24.3 34.0 28.1

Total Orgs 28 25 27 27 8 4

in all six definitions/datasets (except once), indicating strong

preference from scanning organizations for its use.

Next, we validate our inferences using the publicly avail-

able lists of “Acknowledged Scanners” [9], aiming to shed

light into organizations that are seemingly benign and per-

form aggressive scanning for research purposes. We consider

an identified AH as an ACKed scanner if i) its IP is within

the list of IPs available in [9]; ii) we find a match via reverse

DNS checks. I.e., we compiled a list of 48 “keywords”(see

list [2]). based on the reverse DNS records of the IPs in [9].

Table 6 summarizes the matching results. E.g., we find that

4706 IPs from 27 distinct organizations using definition #1

and Darknet-1 are indeed AH. We note that we discovered

several IPs (around 7600 in total) belonging to organizations

considered as “ACKed scanners” that were not included in

[9]. Overall, we identified 7,974 IPs from 29 unique ACKed

scanning organizations (out of 36 in [9]) during the full 22-

months period across all definitions.

We next characterize the aggressive hitters in terms of

the top applications they target (with regards to packets re-

ceived). We also break down the attempts against each port

based on whether the ZMap, Masscan or “Other” fingerprints

have been observed (see [17] for the ZMap, Masscan finger-

prints). Figure 4 shows the top ports/protocols for definition

#1. We notice that 20 out of top 25 ports are present both in

2021 and 2022, and that AH send large number of packets

to TCP ports. Out of top 25 services which receive the most

number of packets in 2021, only 4 UDP-based services are

targeted. ICMP (Echo Requests) completes the top-25 set.

Next, we take a moment to compare this behavior with

prior work [17], which also employed Merit’s Darknet. Fig-

ure 2 in [17] shows the same type of AH (i.e.,large scans
targeting more than 10% of the dark IP space) and offers a

baseline for comparison. Indeed, AH’s profile has dramati-

cally changed since the Durumeric et al. 2014 study. SSH was

the top-targeted port by AH back then, but it now ranks 3rd

in both 2021 and 2022. The top-ranked aimed ports currently,



Anand et al.
63

79
-TC

P 
23

-TC
P 

22
-TC

P 
44

3-
TC

P 
33

89
-TC

P 
23

75
-TC

P 
80

-TC
P 

12
3-

UD
P 

50
60

-U
DP

 
80

88
-TC

P 
81

-TC
P 

23
76

-TC
P 

38
9-

UD
P 

53
-U

DP
 

80
80

-TC
P 

55
55

-TC
P 

84
43

-TC
P 

10
44

3-
TC

P 
0-

IC
M

P 
44

5-
TC

P 
85

45
-TC

P 
59

00
-TC

P 
92

00
-TC

P 
16

1-
UD

P 
19

00
-U

DP
 0.0

0.5

1.0

1.5

2.0

2.5

Da
rk

ne
t-1

 (2
02

1)
 --

 N
um

be
r o

f P
ac

ke
ts 1e10

re
di

s
te

ln
et

ss
h

ht
tp

s
m

s-
wb

t-s
er

ve
r

do
ck

er
ht

tp
nt

p
sip ra

da
n-

ht
tp

Un
as

sig
ne

d
do

ck
er

-s
ld

ap
do

m
ai

n
ht

tp
-a

lt
pe

rs
on

al
-a

ge
nt

pc
sy

nc
-h

ttp
s

cir
ro

ss
p

m
icr

os
of

t-d
s

Un
as

sig
ne

d
rfb wa

p-
ws

p
sn

m
p

ss
dp

Zmap
Masscan
Other

63
79

-TC
P 

23
-TC

P 
22

-TC
P 

84
43

-TC
P 

80
-TC

P 
44

3-
TC

P 
23

75
-TC

P 
23

76
-TC

P 
33

89
-TC

P 
81

-TC
P 

80
88

-TC
P 

80
80

-TC
P 

50
60

-U
DP

 
55

55
-TC

P 
12

3-
UD

P 
42

00
-TC

P 
80

89
-TC

P 
53

-U
DP

 
50

38
-TC

P 
0-

IC
M

P 
50

80
2-

TC
P 

11
1-

TC
P 

16
1-

UD
P 

92
00

-TC
P 

44
5-

TC
P 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Da
rk

ne
t-2

 (2
02

2)
 --

 N
um

be
r o

f P
ac

ke
ts 1e10

re
di

s
te

ln
et

ss
h

pc
sy

nc
-h

ttp
s

ht
tp

ht
tp

s
do

ck
er

do
ck

er
-s

m
s-

wb
t-s

er
ve

r
Un

as
sig

ne
d

ra
da

n-
ht

tp
ht

tp
-a

lt
sip pe

rs
on

al
-a

ge
nt

nt
p

vr
m

l-m
ul

ti-
us

e
Un

as
sig

ne
d

do
m

ai
n

Un
as

sig
ne

d

Un
as

sig
ne

d
su

nr
pc

sn
m

p
wa

p-
ws

p
m

icr
os

of
t-d

s

Zmap
Masscan
Other

Figure 4: Top-25 ports targeted by AH (definition #1).

according to ORION NT, are Redis and Telnet; neither of

them were in the top-5 ports in 2014. This result is somewhat

expected if one considers the rise of IoT applications and the

botnet families that target Telnet services on IoT devices (e.g.,

see [47]). Further, Redis vulnerabilities are recently popu-

larly mined for Cryptojacking [8] and other application-level

attacks [25]. Looking at Figure 3 in [17], we also notice that

ZMap/Masscan currently play a prominent role in Internet-

wide scanning whereas in 2014 their presence was minimal

(as expected, since they were relatively unknown tools then).

Comparing with Richter et al. study [45], we do observe

some similarities in the top-ranked ports (see Figure 10 [45])

as well as some notable differences. E.g., Telnet was the top-

scanned port in the scanners identified in Richter et al. [45],
agreeing with current trends (i.e., Telnet is the 2nd most

scanned port in our datasets). However, we notice that Re-

dis/6379 was absent from the rankings of Richter et al. [45].
Interestingly, we also see that TCP/445, one of the most

scanned ports in Richter et al. [45], is not preferred by AH.

This agrees with the results in Durumeric et al. [17] where we
see TCP/445 mostly associated with “small scans" (i.e., scan-

ning less than 10% of the Darknet space; see Figure 2, [17]).

We also validate our results using lists of scanners obtained

from GreyNoise [23] in which nefarious aggressive scanners

are included. Using the month of June 2022 as a basis for

comparison, we found a significant overlap between the two

vantage points; namely, on average 99.3% of AH identified

in our Darknet are also found in GN on a given day. Since

GreyNoise operates a “distributed” honeypot in several re-

gions worldwide, this suggests that most of our identified

hitters are not performing localized scans, but rather engage

into macroscopic Internet-wide behaviors.

6 RELATEDWORK

Several notable works have leveraged darknet data to un-

derstand IPv4 macroscopic activities; see, e.g., [51, 17, 45, 31,

13, 42, 4, 37, 28, 3]. For instance, network telescopes have

been employed to study malware and botnet outbreaks [3, 4,

13], network outages [14, 24], distributed denial of service

attacks (DDoS) [39, 31], trends in Internet-wide scanning [17,

37], misconfigurations [51, 11], address usage [5, 12], etc.

Leveraging the large “aperture” offered by large Darknets

(i.e., ones that monitor hundreds of thousands or even mil-

lions of dark IPs), one can detect even moderately paced

scans within only a few seconds with very high probability

(assuming uniform scans—see [38]).

Our study is closest to the works of Durumeric et al. [17]
and Richter et al. [45]. Scanning trends have changed since

these studies were conducted (2014 and 2019, respectively),

andwe document some differences in Section 5. To the best of

our knowledge, this study is the first that quantifies the net-

work impact of aggressive Internet-wide scanners. We note

though that we have not examined IPv6 scanners [11, 46]

nor their impact. The recent work in [46] studies such scan-

ners through the lens of a large Content Delivery Network

and available firewall logs. We leave analysis of AH IPv6

scanners as future work.

7 CONCLUSIONS

The paper studies a germane sub-population of Internet-wide

IPs, namely the AH observed at the ORION NT. The impact

on the network of theseAH, as shown in the paper, is surpris-

ingly high. Thus, understanding their behavior is important,

with the tangible goal of potentially blocking malicious ones

(e.g., the non-ACKed ones) either at the “edge” of an ISP or as

they transit the Internet. An important security implication

of these AH, which are intense and persistent, is that they

are more likely to succeed in finding the vulnerabilities they

seek. Further, from a network performance perspective, a

critical consequence is that high packet rates (see Figure 1)

from these AH could lead to service degradation akin to

ones occurring during DoS attacks. Thus, raising awareness

towards them is important; we plan to share curated lists of

these AH with the community on a regular basis.

We offer three concrete methodologies on how to iden-

tifyAH. With the proposed methodologies we aim at obtain-

ing “quality lists” of scanners, minimizing false positives due

to spoofing or misconfigurations. Further, succinct AH lists

have practical implications: engineers that would consider

blocking Internet-wide scanners are likely to focus anyways

on the top ones in order to minimize the risk of blocking

legitimate traffic due to DHCP IP churn and NAT considera-

tions [50]. In fact, as Figure 6 (right, Zipf-like distribution)

in the Appendix shows, even starting by blocking a small

amount of AH, a large fraction of the problem is ameliorated.

Future plans include further investigating the impact of

the aggressive hitters on more networks beyond the aca-

demic ones studied here. In addition, by examining AH ob-

served at additional vantage points (e.g., other large Dark-

nets), we are aiming to further validate that there is no bias

in our existing results. The fact that we identified AH us-

ing Merit’s “dark" IP space and that these AH contribute an

important traffic portion at a completely different network

(i.e., CU campus) points towards no selection bias. We leave

analysis of heavy IPv6 scanners as part of future work, along

with further characterizations of the IPv4 AH population.
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A APPENDIX

Supplementary results for Section 3. Table 7 summa-

rizes AH population findings for all definitions and datasets,

and illustrates the intersection of yearly scanners found for

all definitions within the two datasets.

Supplementary results for Section 4. Table 8 provides a

detailed view of the number of hitters that were identified

using the ORION NT and the portion of those that were

observed at each vantage point / router. Figure 5 validates

(in accordance with Table 3) that the actions of the AH are

similar across both the Darknet and the Flows datasets.

Supplementary results for Section 5. To shed more light

into the AH, we remove the ACKed scanners and focus on

the remaining, presumably malicious, hosts. We leverage

GN’s threat intelligence database to obtain insights. Figure 6

(left) depicts the results in which we consider AH identi-

fied in June 2022. We conclude that i) a large fraction of the

detected AH are indeed malicious, ii) the majority are of

unknown intentions (thus, merit further investigation), iii)
the benign scanners not removed by our ACKed scanners

filter are very few (hence, the [9] lists are quite comprehen-

sive) and iv) almost all AH identified in ORION NT are also

present in GN, suggesting this population is indeed primar-

ily engaged in Internet-wide activities. Table 9 zooms-into

the top-20 “tags” that characterize the set of AH in ORION

NT that are not ACKed scanners.We observe that a large frac-

tion of these non-ACKed AH are indeed associated with ma-

licious activities (w.g., Mirai-related scanners, worms, etc.).

Figure 6 indicates that even a small number of AH is

responsible for high packet volumes.
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Table 7: Aggressive scanners across all definitions.

Darknet-1 D1 D2 D3 D1 ∩ D2 D2 ∩ D3 D1 ∩ D3 D1 ∩ D2 ∩ D3

IP 158681 159159 3971 142012 461 426 407

ASN 7040 6906 439 6649 364 361 353

Org 6748 6906 429 6368 356 351 344

Country 198 197 80 194 80 80 80

Darknet-2 D1 D2 D3 D1 ∩ D2 D2 ∩ D3 D1 ∩ D3 D1 ∩ D2 ∩ D3

IP 155010 295204 946 155010 142 122 122

ASN 5272 7837 81 5272 78 74 74

Org 5013 7470 75 5013 72 68 68

Country 183 201 25 183 25 25 25

Table 8: Number of active AH IPs seen on each dataset per

Definition (D) and percentage of IPs seen in each router.

Darknet Router-1 Router-2 Router-3

# of AH Percentage (%) Percentage (%) Percentage (%)

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

Flow-1

01-15 4756 7058 71 97.5% 97.3% 100% 96.0% 95.2% 100% 49.4% 48.3% 78.9%

01-16 5413 7794 69 99.7% 99.6% 100% 98.4% 97.8% 100% 51.8% 51.1% 82.6%

01-17 5466 7761 69 99.9% 99.7% 100% 98.2% 97.6% 100% 51.9% 51.4% 84.1%

01-18 5484 7879 66 99.7% 99.4% 100% 97.8% 97.1% 100% 49.9% 49.0% 87.9%

01-19 4890 7361 78 99.7% 99.5% 100% 98.2% 96.4% 98.7% 52.0% 51.4% 75.6%

01-20 4773 7349 75 99.6% 99.4% 100% 97.7% 95.9% 100% 51.4% 50.5% 80.%

01-21 4662 7133 92 99.6% 99.4% 100% 98.0% 96.0% 100% 51.4% 50.3% 77.2%

Flow-2 10-01 2162 3462 50 94.6% 92.1% 100% 93.7% 91.1% 100% 20.0% 19.6% 44.0%
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Figure 5: Observed ports in Flow and Darknet (2022-10-01).

Left: daily AH, def. #1, Right: daily AH, def. #2.
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Figure 6: Left: Breakdown ofmonthlyAHwithin June 2022

based on GN data (def. #1). Right: Cumulative percentage of

all daily AH traffic by unique IP (ranked by packet contri-

bution). The top 1% of AH contribute more than 25% on a

typical day. Data shown for June 2022.

Table 9: GN Tags for non-ACKed AH (June 2022).

Rank GreyNoise Tags IP Count

#1 ZMap Client 13535

#2 Web Crawler 11661

#3 Mirai 8955

#4 Docker Scanner 4476

#5 Kubernetes Crawler 4466

#6 SSH Bruteforcer 1902

#7 TLS/SSL Crawler 1682

#8 SSH Worm 1540

#9 Shenzhen TVT Bruteforcer 1516

#10 Go HTTP Client 774

#11 Python Requests Client 765

#12 Telnet Bruteforcer 720

#13 JAWS Webserver RCE 693

#14 Ping Scanner 652

#15 Sipvicious 624

#16 Looks Like RDP Worm 509

#17 Carries HTTP Referer 454

#18 SMBv1 Crawler 394

#19 Hadoop Yarn Worm 360

#20 Miniigd UPnP Worm CVE-2014-8361 344
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