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ABSTRACT

One challenge in understanding the evolution of Internet in-
frastructure is the lack of systematic mechanisms for moni-
toring the extent to which allocated IP addresses are actu-
ally used. Address utilization has been monitored via ac-
tively scanning the entire IPv4 address space. We evaluate
the potential to leverage passive network traffic measure-
ments in addition to or instead of active probing. Passive
traffic measurements introduce no network traffic overhead,
do not rely on unfiltered responses to probing, and could
potentially apply to IPv6 as well. We investigate two chal-
lenges in using passive traffic for address utilization infer-
ence: the limited visibility of a single observation point;
and the presence of spoofed IP addresses in packets that
can distort results by implying faked addresses are active.
We propose a methodology for removing such spoofed traf-
fic on both darknets and live networks, which yields results
comparable to inferences made from active probing. Our
preliminary analysis reveals a number of promising findings,
including novel insight into the usage of the IPv4 address
space that would expand with additional vantage points.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network monitoring;
C.2.5 [Local and Wide-Area Networks]: Internet

Keywords

Passive measurements; IPv4 address space; Internet address
space; Darknet; Network telescope; Spoofed traffic; Internet
census

1. INTRODUCTION AND MOTIVATION
On February 3, 2011, the Internet Assigned Numbers Au-

thority (IANA) allocated its last set of available IPv4 ad-
dresses to Regional Internet Registries (RIR), a historic turn-
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ing point for the Internet. The address pools of the Euro-
pean and Asian-Pacific RIRs were exhausted in 2012; the
other RIRs will likely run out within the next few years.
Although IPv4 address scarcity is now a reality, so is the
fact that allocated addresses are often heavily under-utilized.
One challenge in managing Internet address space (both
IPv4 and IPv6) is the lack of reliable mechanisms to monitor
actual utilization of addresses. Macroscopic measurement of
patterns in IPv4 address utilization also reveals insights into
Internet growth, including to what extent NAT and IPv6
deployment are reducing the pressure on (and demand for)
IPv4 address space.

To our knowledge, the only previous scientific work map-
ping actual utilization of IPv4 addresses is ISI’s Internet
Census project [10] (ISI Census, in the following), which pe-
riodically sends ICMP echo requests to every single IPv4
address (excluding private and multicast addresses) to track
the active IP address population. This approach has four
primary limitations: significant probing overhead; potential
to offend probing targets (i.e., the entire Internet) who may
request not to be probed or even blacklist probing addresses;
inaccuracies due to the fact that many networks either filter
out ICMP echo requests or respond to them on behalf of
other IP addresses, and inability to scale for use in a future
IPv6 census.

We investigate the potential for passive network traffic
measurements to inform or even substitute for active meth-
ods of measuring address space utilization. Passive mea-
surements introduce no network traffic overhead, do not
rely on unfiltered responses to probing, and could poten-
tially apply to IPv6 as well. On the other hand, a passive-
measurement approach to address utilization inference has
two daunting challenges which we explore in this paper: the
limited visibility of any single vantage point of traffic; and
the presence of spoofed IP addresses in packets that can
significantly distort results by implying faked addresses are
active. We analyze two types of passive traffic data: (i) In-
ternet Background Radiation (IBR) packet traffic1 [25] cap-
tured by darknets (also known as network telescopes); (ii)
traffic (net)flow summaries in operational networks. We de-
velop and evaluate techniques to identify and remove likely
spoofed packets from both darknet (unidirectional) and two-
way traffic data. Our contributions include:

• We demonstrate that, surprisingly, passive traffic mea-

1IBR is generated primarily by malware.



surements, including both packet-level captures from
darknets and two-way network flow summary records
from operational networks, can reveal substantial in-
sight into Internet address utilization.

• We introduce and validate heuristics for detecting IP
address spoofing in captured network traffic data, thus
mitigating their impact on our inferences.

• We use our traffic data sets to show that combining
passive with active measurements can reduce probing
(by 38.5%) and find an additional ≈ 450K active /24s
not detected as active by ICMP-based Internet census
measurement.

• Our initial results reveal new macroscopic insights into
Internet address space utilization, such as increasing
activity within large legacy address blocks; additional
vantage points would likely illuminate activity in other
regions of Internet address space.

• We publish comprehensive maps of IPv4 address space
utilization, at a /24 granularity, for 2012 [7].

2. FRAMING THE PROBLEM
To investigate the potential of passive measurements to

provide a census-like snapshot of IP address space usage, we
consider four factors: finding appropriate traffic measure-
ment locations; selecting an observation granularity; identi-
fying and removing traffic with spoofed IP source addresses;
and quantitatively evaluating our algorithm including vali-
dating against what ground truth data we can gather.
Observation granularity. We analyze the usage of the

IPv4 address space with /24 address-block granularity (/24
blocks, in the following), i.e., we consider a /24 block as ei-
ther active (or inactive) if we observe traffic from at least one
(or exactly zero) IP address from that address block. There
is no universal IP address segment boundary space (due to
sub-netting and varying size of administrative domains), but
using a /24 granularity mitigates the effects of dynamic but
temporary IP address assignment (e.g., DHCP), as well as
having an intuitive relationship with both routing operations
and address allocation policy.
Measurement location. We devise techniques for two

types of passive measurement data: bidirectional netflow
data from all nodes in a large live research network (SWITCH,
in Switzerland), and raw unidirectional packet traffic data
from two large darknets. Section 3 describes these data sets,
and others we used to validate our inferences.
Identifying and removing spoofed traffic. Packets

with source IPs other than those assigned to the sending
host, i.e., spoofed traffic, will skew our address utilization
results. Source IP addresses may be spoofed for a variety
of reasons, typically to prevent attribution of an attack and
avoid being caught [6]2, but also due to transmission or pro-
gramming (human) errors that induce address bit errors.
Darknets are less likely to be the target of spoofed DoS at-
tacks since there are no hosts to attack, but both dark and
live networks receive unintentionally spoofed packets. Ac-
curately identifying passively observed spoofed traffic may
be impossible, but we propose heuristics to exclude large

2nmap [15], a popular scanning tool, includes an option to
add spoofed traffic to a scan to ambiguate the scanner’s
actual IP address.

fractions of spoofed traffic in order to limit its impact on
our estimates of IPv4 space usage. Section 4 describes our
methodology for the two different types of traffic data.

Evaluating our approach. Finally, we assess how ac-
curately we have distinguished between active and inactive
areas of the IPv4 address space, given limited ground truth
(described in Section 3). Our techniques yield four types
of inferences: true positives (tp), false positives (fp), true
negatives (tn) and false negatives (fn). We evaluate their
performance using four standard metrics:

• Precision = tp

tp+fp
: fraction of positives that are true

positives.

• Recall = tp

tp+fn
: fraction of “active”-labeled networks

correctly reported as active.

• True negative rate = tn
tn+fp

: fraction of“inactive”-labeled

networks correctly reported as inactive.3

• Accuracy = tp+tn

tp+tn+fp+fn
: fraction of correctly classi-

fied positives and negatives.

3. DATASETS
Our passive measurement data include: (i) full packet

traces collected from a /8 network telescope operated by
the University of California San Diego (UCSD) [24]; (ii)
full packet traces collected from a ≈/8 network telescope
(space covering 14M different addresses) operated by Merit
Network (MERIT) [17]; and (iii) unsampled NetFlow traces
collected at SWITCH, a regional academic backbone net-
work that serves 46 single-homed universities and research
institutes in Switzerland [22]; the monitored address range
of SWITCH contains 2.2 million IP addresses, which corre-
spond to a continuous block slightly larger than a /11. All
datasets are from the same collection period, between July
31 and September 2, 2012.

For comparison, we use the ISI Internet Census dataset
it49c-20120731, obtained by probing the entire IPv4 address
space [12] during this same time window. Based on the
suggestions by the data collector [13], we filtered this dataset
to only those probes that received an ICMP echo reply, and
where the source address in the reply matched the target
address of the original probe. We do not consider negative
replies (e.g. ICMP time exceeded) since we assume they
are not reaching the target. In addition, we filtered out
all probes sent to IP addresses with a least significant byte
of 0 or 255, which are typically reserved for network and
broadcast addresses respectively [10] and third parties along
the path may intercept and reply to such probes. Note that
the ISI Census experiment was designed to report at a /32
(host) rather than /24 (subnet) granularity, but we apply
the resulting data set to a /24 granularity analysis.

To establish a set of unrouted IPv4 address blocks, we
take a list of BGP prefixes announced and captured by
the route-views2.routeviews.org [3] collector between July 31
and September 2, 2012, and assume all other address blocks
are unrouted. We construct a validation“ground truth”data
set from this same BGP data and the ISI Census snapshot
described above. We label as “inactive” all unrouted /24
blocks (≈6.5M), assuming they should not appear in (un-
spoofed) traffic, and we label as “active” all the /24 blocks

3This metric is also known as specificity.



found responsive in the ISI census dataset (≈4.3M). This
validation data set is limited by the lack of ground truth for
address blocks that do not respond to probing.

4. TECHNIQUES FOR A PASSIVE CENSUS
We develop heuristic techniques to filter IP address spoof-

ing from passive traffic measurements on both live networks
(§ 4.1) and darknets (§ 4.2), and evaluate their effectiveness
using the four metrics in Section 2.

4.1 Measurements from a live network
We developed a heuristic to identify used IP address blocks

from traffic flow data, e.g., NetFlow records, and tested
it on unsampled NetFlow records collected from all border
routers of SWITCH. Our heuristic relies on the typical na-
ture of TCP: if we see two IP addresses engaged in a two-way
TCP connection, we assume neither address is spoofed. Our
methodology has two steps: we first find two-way TCP con-
nections and then remove connections with too few packets
or bytes. A TCP connection is identified by the standard
5-tuple: source and destination IP addresses and port num-
bers and the layer-4 protocol. We did not include TCP flags
or other header fields since they do not appear in our Net-
Flow data. To create two-directional flows, we must first
reconstruct flows that NetFlow has fragmented into multi-
ple records due to flow expiration mechanisms (used to limit
the size of the flow table). Specifically, we merge flow records
with identical 5-tuples within the same 10-minute interval
into a single flow, as well as flows within the same or adja-
cent time intervals with the same 5-tuple, but with reverse
values in the source and destination fields. The result is a
two-way flow.
In some cases a two-way flow may still involve a spoofed IP

address. For example, repling to a connection attempt con-
taining a spoofed source IP address yields a two-way flow.
For this reason, we require a TCP flow to carry a minimum
number of packets in order to classify its addresses as not
spoofed. We require by default at least 5 packets (a 3-packet
handshake; 1 packet of payload; and typically 4 but at least
1 packets to reset or terminate a connection) and evaluate
the impact of alternative values. To gain more confidence
in situations that might include retransmissions (thus sur-
passing the packet threshold even if a TCP connection is
not established), we add a minimum average packet size re-
quirement, which implies that TCP payload is present. IP
and TCP headers are 20-bytes, each may hold 40 additional
bytes for options, so we evaluate multiple minimum average
packet sizes between 40 and 120 bytes (on layer 3) before
selecting a value for this parameter.
Next we analyze how the two parameters of our heuristic,

i.e., minimum number of packets and average packet size,
affect the results. Table 1 illustrates how the unique count
of inferred active /24 blocks and the corresponding percent-
age that are actually unrouted change with different values
of these two parameters. The percentage of unrouted blocks
inferred as active is low, i.e., below 0.1%, for most parameter
settings, while the coverage ranges between 3.3M and 4.2M
/24 blocks. Relaxing the parameters increases the coverage,
but infers a higher fraction of unrouted subnets as active.
Based on the data in Table 1, we conservatively set the av-
erage packet size threshold of our heuristic to 80 bytes (as
a smaller choice results in a steep increase in the percent-
age of unrouted blocks). In addition, we keep the default

5 packet requirement, since other values (except for the 2
packet value, which increases significantly the percentage of
unrouted blocks), only moderately affect the two metrics4.
Applying our heuristic reduces the number of /24 blocks
we infer as active from 12.9M (without filtering IP address
spoofing) to 3.6M.

4.2 Measurements from darknets
The absence of legitimate users and the reduced amount

of traffic reaching a darknet (telescope) make it a convenient
vantage point to collect and inspect traffic, both for privacy
and logistical concerns. But darknets normally only see
incoming traffic and do not respond, making bidirectional
flow-based data analysis techniques inapplicable. Also, traf-
fic reaching darknets comes from a variety of unpredictable
sources (such as malware and misconfigurations at different
layers of the protocol stack), so defining “normal” traffic is
inherently difficult. To mitigate the effects of spoofing on
darknet measurements, we focus on identifying and filtering
out large portions of spoofed traffic, rather than first iden-
tifying unspoofed traffic as we do with bidirectional traffic.
We build signatures for our filters by identifying suspicious
traffic components, manually isolating and analyzing them,
and then defining a filter to remove them. We focus on
spoofed traffic that appears to originate from many sources
(such as randomly spoofed traffic), which we call large-scale
spoofing. We assume that the remainder of spoofing is not
only difficult to detect without responding to received pack-
ets, but has a much smaller impact on our inferences, which
we confirm at the end of this section.

In search of large-scale spoofing, we look for two distinct
behaviors:

1. bursty behavior – (i) sudden spikes in the number of
unique source IP addresses, unique source /24 blocks,
and newly observed source IP addresses (source /24
blocks) per hour;

(ii) the same type of events with only source addresses
in unrouted network blocks (which normally should
not generate traffic);

2. long-term consistent behavior: (i) we aggregate pack-
ets over the entire measurment window into traffic
classes by protocol and port (when applicable) and in-
vestigate classes with many originating unrouted /24
blocks; (ii) we aggregate packets based on the least
significant byte of the source address to look for in-
consistencies in address utilization.

For bursty traffic, we applied a simple spike-detection al-
gorithm, with a threshold of 25% more than the average
value observed over the last ten hourly time bins. We tried
different values of these parameters without observing sig-
nificant changes in what was detected as spoofed, since most
events of interest cause large traffic variations.

Figure 1 shows that some bursty spoofing events are not
visible when considering packets from all sources, but they
become easily detectable when looking only at source ad-
dresses of unrouted networks. In some cases, this phenomenon
is due to the nonuniform distribution of unrouted networks

4Since handshake packets typically do not carry payload,
the 80-byte average packet size requirement might be too
strict. However, payload in SYN packets is not excluded by
the TCP protocol definition [16].



2 packets 3 packets 4 packets 5 packets 6 packets 7 packets

40 bytes 4,234,657 (2.22%) 3,948,088 (0.088%) 3,877,972 (0.062%) 3,847,184 (0.024%) 3,841,394(0.011%) 3,780,039 (0.0071%)
80 bytes 3,634,485 (0.0012%) 3,634,150 (0.00091%) 3,634,047 (0.00088%) 3,633,905 (0.00083%) 3,632,279 (0.00080%) 3,630,416 (0.00072%)
120 bytes 3,514,057 (0.00097%) 3,513,738 (0.00080%) 3,513,529 (0.00077%) 3,513,284 (0.00074%) 3,510,953 (0.00071%) 3,510,284 (0.00063%)

Table 1: Unique count of /24 blocks in the SWITCH dataset seen in two-way TCP flows with the given minimal packet
count and minimal average packet size requirements. The figure in parentheses shows the percentage of the /24 blocks that
are unrouted. In bold we highlight our selected parameter setting.

Filter Characterization
Num. /24s Num. Unrouted /24s Num. Dark /24s

UCSD MERIT UCSD MERIT UCSD MERIT

G
e
n
e
ra

l

TTL> 200 and not ICMP Large-scale/Bursty 10,095,728 9,745,800 30,883 68,874 119,163 68,338
Least signif. byte src addr 0 Large-scale/Bursty 662,689 427,214 21,795 1,717 3,874 1,006
Least signif. byte src addr 255 Large-scale/Consistent 328,380 274,078 296 1,257 34 54
Protocol 0 Large-scale/Bursty 60,913 16,919 15,849 354 512 106
Protocol 150 Large-scale/Consistent 339 33 79 0 0 0
Same Src. and Dst. Addr. Small-scale 625 1 0 0 625 1

S
p
e
c
ifi
c

All Specific Filters Large-scale 1,937,886 976,153 532,711 286,684 15,916 7,506

Table 2: Summary of filtering heuristics used in darknet measurements and their impact in terms of source /24 blocks. We
defined filters that captured general characteristics of spoofing, but in some cases we eliminated spoofing traffic specific to our
darknets. For each general filter and the aggregate of all the specific filters, we report the total number of /24 blocks used as
sources in packets captured by the darknets, as well as the number that are unrouted and dark.

over the address space, e.g., the temporary popularity of
some address blocks as source addresses despite little change
in total number of spoofed sources.
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Figure 1: Routed and unrouted networks by hour (UCSD).
For both darknets, we observe significant increases in the
number of unrouted source networks for some hours, which
we inspect to discover and exclude spoofed traffic.

To identify consistent spoofing behavior, we aggregated
the entire data set by protocol and port, and then examined
classes of traffic with either more than 10 unrouted /24s or
a percentage of unrouted /24s greater than 0.4%. Classes
with traffic below these thresholds were difficult to infer as
spoofed based on traffic patterns, but these thresholds are
sufficient to remove large-scale events. We also aggregated
based on the least significant byte of the source address,
since packets with byte 0 and byte 99 were symptomatic of
several spoofing spikes.
Each spoofing behavior we identified exhibited distinctive

properties, which we synthesized into a set of filtering heuris-
tics. Table 2 lists how many /24 blocks (respectively total,
unrouted-only, dark-only) originated traffic matching each
heuristic. The first heuristic, based on the value of the TTL
IP header field, filters out by far the largest number of /24
blocks. We found 20 spikes (11 in UCSD data and 9 in
MERIT data) where a significant number of UDP packets

with unrouted sources had the same destination port and
TTL above 200. Our filter excludes traffic based on the
large TTL since it indicates a general abnormality: most
operating systems use a default a TTL of 128 or less [20]
(although, several switch to a TTL of 255 when sending
ICMP packets). Our heuristics based on traffic spikes filter
out not only the likely spoofed traffic during the spike, but
also traffic matching this filter outside of the spike.

Other significant portions of spoofed traffic use uncommon
or unassigned protocols, but such behavior could also be le-
gitimately experimental so we do not exclude traffic solely
for this reason. But when many packets with an uncommon
protocol appear to originate from unrouted addresses, it is
more likely they are the result of bit-flips during transmis-
sion or programming errors when writing packets. We ex-
clude packets with source address ending in .0 or .255 since
traffic should not originate from these addresses (when part
of a /24 subnet). We also identified small spoofing events
where the source and destination were in the same darknet.
Finally, the last line of Table 2 aggregates results for a set
of filtering criteria specifically crafted for abnormal events
observed in one of the darknets. They do not seem generally
applicable, so we only report their effect of their use on our
datasets.5

Table 2 shows that darknets observe a sufficient amount of
spoofed traffic that neglecting it would invalidate our infer-
ences. For example, the first heuristic in the table covers ap-
proximately 10M /24s covered, whereas our final estimates
of active /24 blocks are around 3M per darknet (Section 5).
In total, our filters removed over 7.2M /24s from the traffic
data at each darknet. To assess the impact of the remaining
spoofing, we examined the portion of the remaining filtered
traffic that had source addresses we knew to be spoofed be-
cause: either (i) they originated from UCSD and MERIT
darknet IP addresses, or (ii) from /24 blocks monitored at
SWITCH from which we never observed a bidirectional flow
(4574 /24 blocks out of the 9343 total /24 blocks monitored

5An example is UDP packets from multiple sources all des-
tined to a single IP, with a payload of all z’s.



Number of /24 blocks (sources)
M

o
n
it
o
re
d

d
e
st
in
a
ti
o
n

UCSD
MERIT SWITCH-DARK

before filtering 54210 (98.4%) 4522 (98.9%)
after filtering 21 (0.038%) 0 (0%)

MERIT
UCSD SWITCH-DARK

before filtering 57769 (91.5%) 4379 (95.7%)
after filtering 8 (0.013%) 1 (0.022%)

Table 3: Our filtering in the darknet datasets dramatically
reduces the percentage of /24 blocks erroneously inferred as
active while known to be spoofed (because they appear to
originate from the darknets or unused blocks of SWITCH).
These blocks originally appear as up to 98.9% active; filter-
ing lowers their inferred usage to 0.038% or less.

Precision Recall True Negative Rate Accuracy

UCSD 0.998 0.672 0.999 0.869
MERIT 0.999 0.645 0.999 0.859
SWITCH 0.999 0.756 0.999 0.903
Total 0.998 0.811 0.999 0.924

Table 4: Validation of passive census techniques based on
standard classification metrics. We examine each passive
source seperately and the three sources combined. The four
metrics are defined in Section 2.

at SWITCH). Table 3 summarizes this analysis, showing
that our filters captured most traffic using source addresses
that we know to be spoofed.6 The substantial reduction
suggests the remaining spoofing is low.

4.3 Validation
Table 4 summarizes the validation results from applying

our techniques to data from three sources (UCSD, MERIT,
and SWITCH), using the validation data set constructed
from BGP and ISI as described in Section 3. We report
the precision, recall, true negative rate, and accuracy, for
each source separately and in aggregate. We compute these
metrics based on a labeled data set that includes 10.8M /24
labeled blocks (4.3M positives and 6.5M negatives). This
labeled data has two key limitations. First, though we com-
piled a large labeled dataset of several million prefixes, the
negatives are based on information about unrouted networks,
which are not representative of routed but unused networks
in the Internet; this bias can lead to both overestimating
or underestimating the accuracy of our techniques. Manual
analysis of darknet traffic also revealed a few unrouted ad-
dress blocks that seem to be used internally (but not globally
advertised) by some organizations (see Section 5). Secondly,
our positives are based on destinations that respond to ISI
Census probes, which may come from from border routers
rather than end hosts (see Section 5); these will induce false
positives in the ISI data and our labeled data set, which may
induce under-estimation of performance of our method.
Table 4 shows the strong performance of our techniques

in terms of precision, true negative rate, and accuracy. High
precision means that the blocks we infer as used are actu-
ally used in most cases. The lower values for recall show
that our techniques do not capture all active /24 blocks,
which is consistent with the fact that each of our measure-

6We do not report combinations with source and destination
addresses in the same darknet (e.g., UCSD-to-UCSD); our
final algorithm excludes packets with sources from known
darknets.

ment sources sees only a substantial (64.5% - 75.6%) fraction
of the labeled positives. Combining measurements from all
three sources increases recall to 0.811. Our techniques also
yield a high true negative rate, above 0.999, i.e., they cor-
rectly identify the vast majority of unrouted networks as
unused. Finally, the last column of Table 4 shows that the
overall accuracy, including negative and positive samples, is
between 0.859 and 0.903 and improves when combining our
three data sources to 0.924.

5. A FIRST LOOK AT THE IPV4 MAP
A complete evaluation of the differences in results given by

our passive approach versus applying data from ISI’s active
approach to a /24 block granularity is beyond the scope of
this paper, but we examine the most obvious differences and
try to explain them based on manual analysis.

Figure 2: Hilbert map visualization comparing merged pas-
sive (UCSD, MERIT and SWITCH) datasets with ISI Inter-
net Census data. The IPv4 address space is rendered in two
dimensions using a space-filling continuous fractal Hilbert
curve of order 12 [18, 21]. Each pixel in the full-resolution
image [7] represents a /24 block; red indicates blocks ob-
served only in the passive data, green blocks are only ob-
served in ISI Census data, and blue blocks are in both. Un-
routed networks are grey. The map highlights differences
between inferences from passive and active measurements,
including significant activity (according to the former) in
two /8 legacy allocations.

The Hilbert map in Figure 2 compares the combined re-
sults from our three passive measurements (Switch + UCSD
+ Merit) to the ISI Census data filtered (Section 3) and ag-
gregated at a /24 granularity – a high-resolution version of
this image is available at [7]. Table 5 provides the count of
/24 blocks discovered by each approach and also reports the



Number of /24 blocks % of routed address space

UCSD 3,139,366 30.7%
MERIT 2,982,609 29.1%
SWITCH 3,633,905 35.5%

All passive 3,942,605 38.5%
ISI 4,281,875 41.8%

Total 4,753,093 46.4%

Table 5: Number of active /24 blocks discovered by each
census method. The methods of estimating address space
usage discussed in this paper have a considerable overlap
in the /24 blocks they observe. By combining methods we
increase the number of /24 blocks known to be active.

union of these sets. We find several large contiguous address
blocks, e.g., /8 to /12, that appear largely populated in only
one of the two measurement approaches.
Blocks that the ISI Census estimates as mostly used but

that our passive traffic approach infers as entirely unused
(other than some noise that we assume are filtering errors)
are solid green in Figure 2. Manual inspection of the largest
block (a /8 network) exhibiting this behavior, suggests that
most responses observed by ISI are from routers that consis-
tently respond to ICMP echo requests to addresses ending
with the same byte (e.g., routers may be configured with vir-
tual interfaces ending in .1 for multiple /24 subnets). Our
/24-granularity aggregation of ISI Census data leads us to
infer, in such /8 block, nearly 12,000 active /24 blocks (59%
of all /24 blocks marked as active) solely due to responses
to probes toward addresses ending in .1. Responses to these
probes indicate an initial TTL of 255, almost exclusively
used by routers and Unix boxes [20]. Similarly, blocks that,
when aggregating ISI Census data in /24 blocks, appear as
heavily populated, but we inferred as only lightly populated
(mostly green with some blue in Figure 2) are also likely due
to routers. Another possible interpretation of this discrep-
ancy is that both phenomena occur: (i) networks match-
ing such blocks have a lower fraction of infected machines
compared to other networks and/or policies that block out-
going known malicious traffic (e.g., a filter on port TCP
445 would block all Conficker-like traffic), resulting in their
under-estimation from darknet measurements; (ii) such net-
works do not exchange traffic with the SWITCH research
network.
Another type of discrepancy we identify is blocks that are

solely present in the passive datasets (solid red in Figure 2).
Manual inspection of three of these cases reveals two possible
causes. If only the darknet, but not the live network, shows
these blocks as largely populated, it may be spoofed traffic
that our filters did not catch. However, in two of these three
cases, we observed traffic from such network blocks in both
the dark and live networks; we speculate that the ISI Census
may have under-estimated the population, either because
they did not probe the network (due to operator request) or
because those networks filter ICMP requests.
Perhaps of most interest are the approximately 15 /8 net-

works that the ISI Census finds to be largely unused. These
are mostly legacy allocations to organizations that vastly
under-utilize them. Our passive measurement techniques
also confirm that the majority of these networks appear as
unused, although at least two of them, both legacy alloca-
tions, appear largely active. One block is allocated to a
large electronics company, and while both the ISI Census

and darknet datasets show limited use of the block (83 and
245 /24 blocks respectively), the SWITCH dataset reflects
much higher use (942 /24 blocks). This difference may mean
that the organization (i) filters ICMP requests, thus limiting
its visibility by the ISI Census, and (ii) has little darknet-
observable malware on internal hosts, or filters it outbound,
limiting its visibility by darknets. The other /8 network
is allocated to a large communications provider which also
likely filters ICMP requests, reducing its visibility via active
measurements. In this case, 99% of the networks identified
as active exclusively by the passive technique are found in a
single /10. Of this /10, the passive approach identifies 6,777
/24 blocks as active, while none are active according to the
ISI Census dataset.

We also verified that the portions of both /8 networks
that our traffic measurements show are active are mostly
not considered active even in the latest (2013) ISI Census
[14]. These examples illustrate that a passive traffic-based
estimation can reveal insight into IPv4 address utilization
beyond what can be seen with active measurements.

Finally, our passive measurements show active blocks in a
few unrouted networks (shaded in grey in Figure 2). We ex-
pected all unspoofed traffic coming from unrouted space to
use private IP addresses. However, in our darknet measure-
ments we found about 140 unrouted, non-private networks
sending traffic that is unlikely spoofed. One of the largest
classes of traffic seen in general by the UCSD network tele-
scope is “conficker-like,” or TCP packets to port 445. Such
traffic has some consistent idiosyncracies: (i) a bug in the
pseudorandom number generator that causes them to send
packets to only a quarter of the address space [8]; (ii) TCP
SYN retransmits in attempts to open a connection, with
specific inter departure times [4]. We observed exactly these
traffic patterns from these unrouted blocks. This traffic is
not visible in the SWITCH measurements because is filtered
out by our live-network filtering heuristic. Such unspoofed
traffic from unrouted space could result from organizations
using their assigned space privately without globally adver-
tising it, or privately using IP addresses not assigned to them
as if they were RFC1918 addresses [1].

6. RELATED WORK
Heidemann et al. [10] was the first published census of

IPv4 address activity using active network probing; they
minimized probing overhead and associated complaints by
spreading the scan over a 30+-day window. Zander et al. [26]
estimated the number of IPv4 addresses actually used on the
Internet by combining active probing and additional data
such as IP addresses in Wikipedia logs, spam blacklists, web
server logs. They estimated approximately 1 billion IPv4
addresses used, which is around 40% of the publicly routed
space. The popularity of active probing methods motivated
the deployment of several efficient scanning tools, including
zmap [9], which uses ICMP to scan the entire IPv4 address
space in under 45 minutes using a single machine. An anony-
mous individual (or group) recently published the results of
a series of illegal (botnet-orchestrated) scans of the IPv4
Internet address space [11] from over 400 thousand bots.
Their ICMP scanning results resemble ISI’s Census findings,
since they found 4.3M /24 blocks containing about 420M
“pingable IPs”. They elicited responses from more (36M) IP
addresses when scanning for open TCP/UDP ports. How-
ever, their probing methodology is not well-documented, and



their measurements may be skewed due to local transparent
proxies intercepting probes from the bots [2]. They also used
the botnet to perform reverse DNS lookups as an alterna-
tive method to infer address space usage; their inferences
match ours for two legacy /8 allocations not visible by the
ISI Census (see Section 5).
We developed a methodology that relies only on passive

measurements to infer macroscopic network activity; pas-
sive techniques avoid some methodological issues with active
probing, most notably policies that prevent responses to ac-
tive probes or induce responses from addresses other than
those probed. However, inferences based on passive data
also have limitations, most notably the presence of traffic
using spoofed source IP addresses, especially in traffic data
that is easiest to obtain, i.e., from IP darknets. The most
important contribution in this work is our heuristics to filter
out spoofed IP traffic from both darknet as well as opera-
tional network traffic flow data (Section 4).
Spoofing is a persistent threat [5,19,25], and at least two

other studies have used TTL-based inference with active and
passive measurements to detect spoofed packets [6,23]. Both
approaches try to establish reference values of TTL for dif-
ferent traffic classes, inferring that packets with diverging
values are spoofed. In [23], the authors observe TTL val-
ues of distinct source IP/protocol pairs over time, to learn
which values legitimate hosts use. Beverly [6] developed a
supervised learning classification algorithm that considers
the TTL value as an indicator of the length of the path
an IP packet traverses. His algorithm classifies incoming
packets into legitimate IP addresses based on valid origin-
destination path lengths (i.e., TTL value). Neither of these
methods work for darknet traffic, since we cannot identify
a reference TTL value for /24 blocks originating a limited
amount of traffic.

7. CONCLUSION
We developed and evaluated a methodology for removing

spoofed traffic from data sets collected on both darknets
and live networks, and found the resulting filtered data to
effectively support census-like analyses of IP address space
utilization. Although some spoofed traffic required manual
removal, we also identified several general classes of spoofed
traffic that enabled us to create heuristic filters to remove
them. Passive traffic data allowed us to identify ≈ 450K
/24 IPv4 blocks as active that were not inferred as active
by ISI’s most recent census measurements; visibility into
other parts of the IPv4 address space would expand with
additional vantage points.
One possible future direction of this work is a hybrid ap-

proach that first infers active IP address blocks based on
passive measurements from one or more (live or dark) van-
tage points, then probes only addresses that cannot be con-
fidently inferred as active. Using all three passive datasets
we gathered, a hybrid approach would not only yield addi-
tional discovery of active /24 blocks, it would also reduce
the active probing using ISI’s method by 38.5%. Using only
the SWITCH traffic vantage point with a hybrid approach
would increase the inferred active /24 blocks and reduce
measurement by ≈ 400K and 35.5%, respectively. In this
hybrid approach, the marginal utility of adding measure-
ments from the darknets thus seems limited (≈ 75K addi-
tional active /24 blocks), but a passive-only measurement
scenario would benefit significantly from these additional

vantage points (≈ 300K more active /24 blocks than when
using only SWITCH data).

This preliminary investigation inspires many additional
questions on the strengths and limitations of this methodol-
ogy. How much does the vantage point matter, in terms of
location and size of address space observed? Would traffic
measurements from IXPs provide considerably more insight
over a shorter time period? Can we improve our ability to
detect (and validate) spoofed traffic, perhaps by responding
to darknet traffic? For a given segment of address space, do
traffic characteristics correlate with present or future address
utilization patterns? How well will this technique work for
IPv6? We hope our results encourage others to investigate
the potential to exploit passive Internet traffic measurements
to perform Internet-wide census studies.
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