The BGP-Inspect Project

Manish Karir, Jon Oberheide (Merit)
Dionysus Blazakis, John Baras (UMd)
The Problem

- Large amounts of data are now, or soon will be available:
 - Route Views, RIPE Archives, PREDICT, etc
- The problem is no longer access to raw data but how to extract useful information from the raw data
- Need tools that can:
 - Scale to large input datasets
 - Provide useful data summarizations
 - Are easy to use
 - Provide useful information
- BGP-Inspect
 - Goal is to attempt to make it easier to use raw data from archives such as Route Views, by pre-processing, reformatting and indexing the data
Outline

• BGP-Inspect and BGPdb
 – Overview and new features
• BGP-Inspect in Action!
 – Case studies
• Conclusions, Future Work and Discussion
BGP-Inspect: Why and What

• Analyzing MRT Data:
 – Large volumes of data ~RV-66G compressed
 – Extracting useful information requires writing custom parsers even for basic information
 – Lots and lots of redundancy

• Approach:
 – Preprocess Route Views data
 – Remove redundancy as much as possible
 – Use data compression to the extent possible
 – Build efficient indices to help queries
 – Pre-compute and store commonly used statistics at data load time not at query time
 – Build easy to use interface
BGPdb

- BGPdb is the core of the BGP-Inspect system
- BGPdb represents the pre-processed database, which is queried by the BGP-Inspect interface
- Provides some useful techniques that maybe applied to processing other large datasets not just BGP datasets
BGPdb – Techniques and Algorithms

• Removing redundancy from BGP datasets
 – ASPATH, COMMUNITY, UPDATE Msgs are repeated over and over, only time changes

• Compressed-Chunked Files
 – Compromise between size and usability

• B+ Tree indices
 – Indexing based on time, this enables fast time-range queries

• Caching while processing input datasets
 – Messages are repetitive, so keep cache of previous processing for speedup
BGP-Inspect: Current State

BGP-Inspect – Beta v0.5
http://bgpinspect.merit.edu

Dataset: August 1 - Present
Current BGPdb size: 102GB
Currently indexing data for 5 peers (AT&T, Level 3, AOL, Sprint, Global X)

• Example queries (per peer, 1,7,10 days):
 • Most active AS’s
 • Most active prefixes
 • Prefixes with most OriginAS changes

• Raw Data Analysis (per peer)
 • Prefix/AS, Time Range
 • Uniques prefixes by AS
 • OriginAS changes for a prefix
 • Time to run query
 • More specific prefixes announced
BGP-Inpsect: Current State (2)

- Equipment
 - Dell 2650 - Web and DB server
 - Dell 2850, dual Xeon with NFS mounted 500GB SATA

- Traffic?
 - ~30 unique IPs per day
Newly Added Features

- Daily auto-load script
 - Cron job
 - Fetch the previous days Route Views data from the public server
 - Insert everything into BGPdb
 - Both for raw queries...
 - ...and for the summary statistics.
 - “Productionized” - everything hardened for public use
Newly Added Features (2)

• Multi-peer queries
 – As requested from last session, a response from multiple peers can be requested from a single query.
 – Tabbed Interface
 • One aggregated tab giving summary info and a multi-bar graph…
 • …and a tab with detailed results for each peer.
Newly Added Features (3)

• Internal fixes and clean-ups
 – Redesigned web infrastructure
 • Cleaner, more structured PHP as opposed to a C CGI implementation
 • UI enhancements (more to come?)
 – New build system to facilitate a source release in the future
Case Study: Cogent de-peering

- On Oct 5th 2005, Level 3 and Cogent stopped peering directly with each other. In order to examine the impact of this event we ran a raw data analysis query for 38.0.0.0/8 (Cogent) for the various Route View peers (that we currently index). This determines the reach-ability impact of this event on 38/8 from the 5 peers in our data. Our initial analysis ranges from September 22nd through October 6th.
Case Study (cont.) - Aggregate

BGP-Inspect

RouteViews Peer: Aggregate
Prefix: 38.0.0.0/8

Query Summary Statistics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Time Range Start</td>
<td>September 22, 2005, 12:00 am</td>
</tr>
<tr>
<td>Query Time Range End</td>
<td>October 6, 2005, 12:00 am</td>
</tr>
<tr>
<td>Total Update Messages</td>
<td>32</td>
</tr>
</tbody>
</table>
Case Study (cont.) - AT&T

BGP-Inspect

RouteViews Peer: 12.0.1.63
Prefix: 38.0.0.0/8

Query Summary Statistics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Time Range Start</td>
<td>September 22, 2005, 12:00 am</td>
</tr>
<tr>
<td>Query Time Range End</td>
<td>October 6, 2005, 12:00 am</td>
</tr>
<tr>
<td>Total Update Messages</td>
<td>16</td>
</tr>
</tbody>
</table>
Case Study (cont.) - AT&T

<table>
<thead>
<tr>
<th>Time</th>
<th>Type</th>
<th>AS Path</th>
<th>Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 23, 2005, 4:12 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 23, 2005, 4:12 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 23, 2005, 4:18 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 23, 2005, 4:44 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 23, 2005, 4:45 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 23, 2005, 4:46 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 23, 2005, 4:47 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 23, 2005, 4:50 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 23, 2005, 4:50 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 24, 2005, 11:56 am</td>
<td>w</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>September 24, 2005, 11:56 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 24, 2005, 11:59 am</td>
<td>w</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>September 24, 2005, 12:00 pm</td>
<td>a</td>
<td>7018 65000 65001 7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>September 24, 2005, 12:00 pm</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>October 4, 2005, 12:01 am</td>
<td>a</td>
<td>7018 65000 65001 7018 174</td>
<td>7018:5000</td>
</tr>
<tr>
<td>October 4, 2005, 12:12 am</td>
<td>a</td>
<td>7018 174</td>
<td>7018:5000</td>
</tr>
</tbody>
</table>
Case Study (cont.) - Level 3
Case Study (cont.) - Level 3

Maximum AS Path Length: 2
Minimum AS Path Length: 2
Average AS Path Length: 2.000000
Origin AS Changes: 0
Number of Unique ASes: 1
Origin ASes List: 174
Time to run query: 3.226 seconds

Prefix Announcements:

<table>
<thead>
<tr>
<th>Time</th>
<th>Type</th>
<th>AS Path</th>
<th>Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 23, 2005, 4:15 am</td>
<td>a</td>
<td>3356 174</td>
<td>-</td>
</tr>
<tr>
<td>September 23, 2005, 4:15 am</td>
<td>a</td>
<td>3356 174</td>
<td>-</td>
</tr>
<tr>
<td>September 23, 2005, 4:22 am</td>
<td>a</td>
<td>3356 174</td>
<td>-</td>
</tr>
<tr>
<td>September 26, 2005, 2:38 pm</td>
<td>a</td>
<td>3356 174</td>
<td>-</td>
</tr>
<tr>
<td>September 26, 2005, 2:38 pm</td>
<td>a</td>
<td>3356 174</td>
<td>-</td>
</tr>
<tr>
<td>September 26, 2005, 3:37 pm</td>
<td>a</td>
<td>3356 174</td>
<td>-</td>
</tr>
<tr>
<td>September 30, 2005, 1:00 am</td>
<td>a</td>
<td>3356 174</td>
<td>-</td>
</tr>
<tr>
<td>September 30, 2005, 1:23 am</td>
<td>a</td>
<td>3356 174</td>
<td>-</td>
</tr>
<tr>
<td>October 5, 2005, 4:49 am</td>
<td>w</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Case Study (cont.) - Level 3

BGP-Inspect

RouteViews Peer: 4.68.0.243
Prefix: 38.0.0.0/8

Query Summary Statistics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Time Range Start</td>
<td>October 4, 2005, 12:00 am</td>
</tr>
<tr>
<td>Query Time Range End</td>
<td>October 15, 2005, 12:00 am</td>
</tr>
<tr>
<td>Total Update Messages</td>
<td>10</td>
</tr>
</tbody>
</table>
Conclusions and Future Work

• Efficient tools for BGP analysis are needed and we’ve created some.
• BGP-Inspect is available at http://bgpinspect.merit.edu and your feedback is very much appreciated.

• Future…
 – More interesting things with the multiple peer response UI (different ways of highlighting the differences between peers)
 – pyBGPdb - a python interface to the BGPdb database providing fast raw queries
 – Automated anomaly detection using these tools