Certified Information Systems Security Officer Module Topics

Module 1: Risk Management
- What Is the Value of an Asset?
- What Is a Threat Source/Agent?
- What Is a Threat?
- What Is a Vulnerability?
- What Is a Control?
- What Is Likely?
- What Is Impact?
- Control Effectiveness
- Purpose of Risk Management
- Risk Assessment

Module 2: Security Management
- Enterprise Security Program
- Building A Foundation
- Planning Horizon Components
- Enterprise Security - The Business Requirements
- Enterprise Security Program Components
- Control Types
- “Soft” Controls
- Technical or Logical Controls
- Physical Controls
- Security Roadmap
- Senior Management’s Role in Security
- Negligence and Liability

Module 3: Identification and Authentication
- Agenda
- Access Control Methodology
- Access Control Administration
- Accountability and Access Control
- Trusted Path
- Who Are You?

Detailed Course Outline

Module 1: Risk Management
- Why Is Risk Assessment Difficult?
- Types of Risk Assessment
- Different Approaches to Analysis
- Quantitative Analysis
- ALE Values Uses
- Qualitative Analysis - Likelihood
- Qualitative Analysis - Impact
- Qualitative Analysis - Risk Level
- Qualitative Analysis Steps
- Management’s Response to Identified Risks
- Comparing Cost and Benefit
- Cost of a Countermeasure

Module 2: Security Management
- Security Roles and Responsibilities
- Security Program Components
- Security and the Human Factors
- Employee Management
- Human Resources Issues
- Importance to Security?
- Recruitment Issues
- Termination of Employment
- Informing Employees
- About Security
- Enforcement
- Security Enforcement Issues

Module 3: Identification and Authentication
- Authentication Mechanisms
- Strong Authentication
- Authorization
- Access Criteria
- Fraud Controls
- Access Control Mechanisms
Module 3: Identification and Authentication (Continued)

Agenda
- Biometrics Technology
- Biometrics Enrollment Process
- Downfalls to Biometric Use
- Biometrics Error Types
- Biometrics Diagram
- Biometric System Types

Agenda
- Passwords and PINs
- Password “Shoulds”
- Password Attacks
- Countermeasures for Password Cracking
- Cognitive Passwords
- One-Time Password Authentication

Agenda
- Synchronous Token
- Asynchronous Token Device
- Cryptographic Keys
- Passphrase Authentication
- Memory Cards
- Smart Card

Agenda
- Single Sign-on Technology
- Different Technologies
- Scripts as a Single Sign-on Technology
- Directory Services as a Single Sign-on Technology
- Thin Clients
- Kerberos as a Single Sign-on Technology
- Tickets
- Kerberos Components Working Together
- Major Components of Kerberos
- Kerberos Authentication Steps
- Why Go Through All of this Trouble?
- Issues Pertaining to Kerberos
- SESAME as a Single Sign-on Technology
- Federated Authentication

Agenda
- IDS
- Network IDS Sensors
- Types of IDSs
- Behavior-Based IDS
- IDS Response Mechanisms
- IDS Issues
- Trapping an Intruder

Module 4: Access Control

Role of Access Control

Definitions

More Definitions

Layers of Access Control

Layers of Access Controls

Access Control Mechanism Examples

Access Control Characteristics

Preventive Control Types

Control Combinations

Administrative Controls

Controlling Access

Other Ways of Controlling Access

Technical Access Controls

Physical Access Controls

Accountability

Information Classification

Information Classification Criteria

Declassifying Information

Types of Classification Levels

Models for Access

Discretionary Access Control Model

Enforcing a DAC Policy

Mandatory Access Control Model

MAC Enforcement Mechanism - Labels

Where Are They Used?

Role-Based Access Control (RBAC)

Acquiring Rights and Permissions

Rule-Based Access Control

Access Control Matrix

Access Control Administration

Access Control Methods

Remote Centralized Administration

RADIUS Characteristics

RADIUS

TACACS+ Characteristics

Diameter Characteristics

Decentralized Access

Control Administration

Module 5: Security Models and Evaluation Criteria

System Protection - Trusted Computing Base

System Protection- Reference Monitor

Security Kernel Requirements

Security Modes of Operation

System Protection- Levels of Trust

System Protection- Process Isolation

System Protection - Layering

System Protection - Application Program Interface

System Protection- Protection Rings

What Does It Mean to Be in a Specific Ring?

Security Models

State Machine

Information Flow

Bell-LaPadula

Rules of Bell-LaPadula

Biba

Clark-Wilson Model

Non-interference Model

Brewer and Nash - Chinese Wall

Take-Grant Model
Module 5: Security Models and Evaluation Criteria (Continued)

ITSEC Ratings
ITSEC - Good and Bad
Common Criteria
Common Criteria Components
First Set of Requirements
Second Set of Requirements
Package Ratings
Common Criteria Outline
Certification vs. Accreditation

Module 6: Operations Security

Operations Issues
Role of Operations
Administrator Access
Computer Operations - Systems Administrators
Security Administrator
Operational Assurance
Audit and Compliance
Some Threats to Computer Operations
Specific Operations Tasks
Product Implementation Concerns
Logs and Monitoring
Records Management
Change Control
Resource Protection
Contingency Planning
System Controls
Trusted Recovery
Fault-Tolerance Mechanisms
Duplexing, Mirroring, Check Pointing
Redundant Array of Independent Disks (RAID)
Fault Tolerance
Redundancy Mechanism
Backups
Backup Types
Remote Access
Facsimile Security
Email Security
Before Carrying Out Vulnerability Testing
Vulnerability Assessments
Methodology
Penetration Testing
Penetration Testing
Hack and Attack Strategies
Protection Mechanism - Honeypot
Threats to Operations
Data Leakage - Social Engineering
Data Leakage - Object Reuse
Object Reuse
Why Not Just Delete File or Format the Disk?
Data Leakage - Keystroke Logging
Data Leakage - Emanation
Controlling Data Leakage - TEMPEST
Controlling Data Leakage - Control Zone
Controlling Data Leakage - White Noise
Summary

Module 7: Symmetric Cryptography and Hashing

Cryptography Objectives
Cryptographic Definitions
A Few More Definitions
Need Some More Definitions?
Symmetric Cryptography - Use of Secret Keys
Cryptography Uses Yesterday and Today
Historical Uses of Symmetric Cryptography
Historical Uses of Symmetric Cryptography - Scytale Cipher
Historical Uses of Symmetric Cryptography: Substitution Cipher
Caesar Cipher Example
Historical Uses of Symmetric Cryptography: Vigenere Cipher
Polyalphabetic Substitution
Vigenere Table Example
Example Continued
Historical Uses of Symmetric Cryptography: Enigma Machine
Historical Uses of Symmetric Cryptography: Vernam Cipher
Historical Uses of Symmetric Cryptography: Running Key and Concealment
One-Time Pad Characteristics
Binary Mathematical Function
Key and Algorithm Relationship
Why Does a 128-Bit Key Provide More Protection than a 64-Bit Key?
Ways of Breaking Cryptosystems - Brute Force
Ways of Breaking Cryptosystems - Frequency Analysis
Determining Strength in a Cryptosystem
Characteristics of Strong Algorithms
Open or Closed More Secure?
Types of Ciphers Used Today
Encryption/Decryption Methods
Type of Symmetric Cipher - Block Cipher
S-Boxes Used in Block Ciphers
Type of Symmetric Cipher - Stream Cipher
Encryption Process
Symmetric Characteristics
Sender and Receiver Must Generate the Same Keystream
They both must have the same key and IV
Strength of a Stream Cipher
Let's Dive in Deeper
Symmetric Key Cryptography
Symmetric Key Management Issue
Symmetric Algorithm Examples
Symmetric Downfalls
Secret Versus Session Keys
Symmetric Ciphers We Will Dive Into
Symmetric Algorithms - DES
Module 7: Symmetric Cryptography and Hashing (Continued)

- Evolution of DES
- Block Cipher Modes - CBC
- Different Modes of Block Ciphers - ECB
- Block Cipher Modes - CFB and OFB
- CFB and OFB Modes
- Symmetric Cipher - AES
- Other Symmetric Algorithms
- Hashing Algorithms
- Protecting the Integrity of Data

Module 8: Asymmetric Cryptography and PKI

- Asymmetric Cryptography
 - Public Key Cryptography Advantages
 - Asymmetric Algorithm Disadvantages
 - Symmetric versus Asymmetric
 - Asymmetric
 - Asymmetric Algorithm - Diffie-Hellman
 - Asymmetric Algorithm - RSA
 - Asymmetric Algorithms - El Gamal and ECC
 - Example of Hybrid Cryptography
 - When to Use Which Key
 - Using the Algorithm Types Together
 - Digital Signatures
 - Digital Signature and MAC Comparison
 - What if You Need All of the Services?
 - U.S. Government Standard
 - Why Do We Need a PKI?
 - PKI and Its Components
 - CA and RA Roles
 - Let's Walk Through an Example
 - Digital Certificates
 - What Do You Do with a Certificate?
 - Components of PKI - Repository and CRLs

Module 9: Network Connections

- Network Topologies - Physical Layer
 - Topology Type - Bus
 - Topology Type - Ring
 - Topology Type - Star
 - Network Topologies - Mesh
 - Summary of Topologies
 - LAN Media Access Technologies
 - One Goal of Media Access Technologies
 - Transmission Types - Analog and Digital
 - Transmission Types - Synchronous and Asynchronous
 - Transmission Types - Baseband and Broadband
 - Two Types of Carrier Sense Multiple Access
 - Transmission Types - Number of Receivers
 - Media Access Technologies - Ethernet
 - Media Access Technologies - Token Passing
 - Media Access Technologies - Polling
 - Cabling
 - Signal and Cable Issues
 - Cabling Types - Coaxial

- Cabling Types - Twisted Pair
- Types of Cabling - Fiber
- Cabling Issues - Plenum-Rated
- Types of Networks
- Network Technologies
- Network Configurations
- MAN Technologies - SONET
- Wide Area Network Technologies
- WAN Technologies Are Circuit or Packet Switched
- WAN Technologies - ISDN
- ISDN Service Types
- WAN Technologies - DSL
- WAN Technologies - Cable Modem
- WAN Technologies - Packet Switched
- WAN Technologies - X.25
- WAN Technologies - Frame Relay
- WAN Technologies - ATM
- Multiplexing
Module 10: Network Protocols and Devices

OSI Model
An Older Model
Data Encapsulation
OSI - Application Layer
OSI - Presentation Layer
OSI - Session Layer
Transport Layer
OSI - Network Layer
OSI - Data Link
OSI - Physical Layer
Protocols at Each Layer
Devices Work at Different Layers
Networking Devices
Repeater
Hub
Bridge
Switch
Virtual LAN
Router
Gateway
Bastion Host
Firewalls
Firewall - First line of defense
Firewall Types - Packet Filtering
Firewall Types - Proxy Firewalls
Firewall Types - Circuit-Level Proxy Firewall
Type of Circuit- Level Proxy - SOCKS

Module 11: Telephony, VPNs and Wireless

PSTN
Remote Access
Dial-Up Protocols and Authentication
Protocols
Dial-Up Protocol - SLIP
Dial-Up Protocol - PPP
Authentication Protocols - PAP and CHAP
Authentication Protocol - EAP
Voice Over IP
Private Branch Exchange
PBX Vulnerabilities
PBX Best Practices
Virtual Private
Network Technologies
What Is a Tunnelling Protocol?
Tunnelling Protocols - PPTP
Tunnelling Protocols - L2TP
Tunnelling Protocols - IPSec
IPSec - Network Layer Protection
IPSec
SSL/TLS
Wireless Technologies- Access Point
Standards Comparison
Wireless Network Topologies
Wi-Fi Network Types
Wireless Technologies - Access Point

Firewall Types - Application-Layer Proxy
Firewall Types - Stateful
Firewall Types - Dynamic Packet-Filtering
Firewall Types - Kernel Proxies
Firewall Placement
Firewall Architecture Types - Screened Host
Firewall Architecture Types - Multi- or Dual-Homed
Firewall Architecture Types - Screened Subnet
IDS - Second line of defense
IPS - Last line of defense?
HIPS
Unified Threat Management
UMT Product Criteria
Protocols
TCP/IP Suite
Port and Protocol Relationship
Conceptual Use of Ports
UDP versus TCP
Protocols - ARP
Protocols - ICMP
Protocols - SNMP
Protocols - SMTP
Protocols - FTP, TFTP, Telnet
Protocols - RARP and BootP
Network Service - DNS
Network Service - NAT

Wireless Technologies - Service Set ID
Wireless Technologies - Authenticating to an AP
Wireless Technologies - WEP
WEP
Wireless Technologies - More WEP Woes
Weak IV Packets
More WEP Weaknesses
How WPA Improves on WEP
How WPA Improves on WEP
TKIP
The WPA MIC Vulnerability
802.11i - WPA2
WPA and WPA2 Mode Types
WPA-PSK Encryption
Wireless Technologies - WAP
Wireless Technologies - WTLS
Wireless Technologies - Common Attacks
Wireless Technologies - War Driving
Kismet
Wireless Technologies - Countermeasures
Network Based Attacks
ARP Attack
DDoS Issues
Man-in-the Middle
Traceroute Operation
Module 12: Security Architecture and Attacks

ESA Definition…
What is Architecture?
Architecture Components
Key Architecture Concepts - Plan
Objectives of Security Architecture
Technology Domain Modeling
Integrated Security is Designed Security
Security by Design
Architectural Models
Virtual Machines
Cloud Computing
Memory Types
Virtual Memory
Memory Management
Accessing Memory Securely
Different States that Processes Work In
System Functionality
Types of Compromises
Disclosing Data in an Unauthorized Manner
Circumventing Access Controls
Attacks
Attack Type - Race Condition
Attack Type - Data Validation
Attacking Through Applications
How Buffers and Stacks Are Supposed to Work
How a Buffer Overflow Works
Attack Characteristics
Attack Types
More Attacks
Host Name Resolution Attacks
More Attacks (2)
Watching Network Traffic
Traffic Analysis
Cell Phone Cloning
Illegal Activities

Module 13: Software Development Security

How Did We Get Here?
Device vs. Software Security
Why Are We Not Improving at a Higher Rate?
Usual Trend of Dealing with Security
Where to Implement Security
The Objective
Security of Embedded Systems
Development Methodologies
Maturity Models
Security Issues
OWASP Top Ten (2011)
Modularity of Objects
Object-Oriented Programming Characteristic
Module Characteristics
Linking Through COM
Mobile Code with Active Content
World Wide Web OLE
ActiveX Security
Java and Applets
Common Gateway Interface
How CGI Scripts Work
Cookies
PCI Requirements
Virtualization - Type 1
Virtualization - Type 2

Module 14: Database Security and System Development

Database Model
Database Models - Hierarchical
Database Models - Distributed
Database Models - Relational
Database Systems
Database Models - Relational Components
Foreign Key
Database Component
Database Security Mechanisms
Database Data Integrity Controls
Add-On Security
Database Security Issues
Controlling Access
Database Integrity
Data Warehousing
Data Mining
Artificial Intelligence
Expert System Components
Artificial Neural Networks
Software Development Models
Project Development - Phases III, IV, and V
Project Development-Phases VI and VII
Verification versus Validation
Evaluating the Resulting Product
Controlling How Changes Take Place
Change Control Process
Administrative Controls
Malware
Virus
More Malware
Rootkits and Backdoors
DDoS Attack Types
Escalation of Privilege
Protect against privilege escalation
DDoS Issues
DDoS
Buffer Overflow Definition
Overflow Illustration
Mail Bombing
Mail Links
Module 14: Database Security and System Development (Continued)

- Phishing
- Spear Phishing
- Replay Attack
- Cross-Site Scripting Attack
- Timing Attacks
- More Advanced Attacks
- Summary

Module 15: Malware and Software Attacks

- Malware
- Virus
- More Malware
- Rootkits and Backdoors
- DDoS Attack Types
- Escalation of Privilege
- DDoS Issues
- DDoS
- Buffer Overflow Definition
- Overflow Illustration
- Buffer Overflows
- Mail Bombing
- E-Mail Links
- Phishing
- Spear Phishing
- Replay Attack
- Cross-Site Scripting Attack
- Timing Attacks
- More Advanced Attacks
- Summary

Module 16: Business Continuity

- Phases of Plan
- Who Is Ready?
- Pieces of the BCP
- BCP Development
- Where Do We Start?
- Why Is BCP a Hard Sell to Management?
- Understanding the Organization
- Critical products and services
- Dependencies
- Supply chain
- Between departments
- Personnel
- Information
- Equipment
- Facilities
- BCP Committee
- BCP Risk Analysis
- Identify Vulnerabilities and Threats
- Categories
- How to Identify the Most Critical Company Functions
- Loss Criteria
- Interdependencies
- Identifying Functions’ Resources
- How Long Can the Company Be Without These Resources?
- Calculating MTD
- Recovery Point Objective
- Calculation of maximum data loss
- Determines backup strategy
- Defines the most current state of data upon recovery
- Recovery Strategies
- Based on the results of the BIA
- May be different for each department
- Must be less than MTD
- Sets the RTO
- What Items Need to Be Considered in a Recovery?
- Facility Backups - Hot Site
- Facility Backups - Warm Site
- Facility Backups - Cold Site
- Compatibility Issues with Offsite Facility
- Which Do We Use?
- Choosing Offsite Services
- Subscription Costs
- Choosing Site Location
- Other Offsite Approaches
- BCP Plans Commonly and Quickly Become Out of Date
- Summary

Module 17: Disaster Recovery

- Proper Planning
- Executive Succession Planning
- Preventing a Disaster
- Preventive Measures
- Backup/Redundancy Options
- Disk Shadowing
- Backing Up Over Telecommunication
- Serial Lines
- HSM
- SAN
- Co-Location
- Other Options
- Review - Results from the BIA
- Review - Results from
- Recovery Strategy
- Now What?
- Priorities
- Plan Objectives
- Defining Roles
- The Plan
- Recovery
- Return to Normal Operations
Module 17: Disaster Recovery (Continued)

- Environment
- Operational Planning
- Emergency Response
- Reviewing Insurance
- When Is the Danger Over?

Module 18: Incident Management, Law, and Ethics

- Seriousness of Computer Crimes
- Incidents
- Incident Management Priorities
- Incident Response Capability
- Incident Management Requires
- Preparing for a Crime Before It Happens
- Incident Response Phases
- Types of Law
- Foundational Concepts of Law
- Common Laws - Criminal
- Common Laws - Civil
- Common Laws - Administrative
- Intellectual Property Laws
- More Intellectual Property Laws
- Software Licensing
- Digital Millennium Copyright Act
- Historic Examples of Computer Crimes
- Who Perpetrates These Crimes?
- The Evolving Threat
- Types of Motivation for Attacks
- A Few Attack Types
- Telephone Fraud
- Identification Protection & Prosecution
- Computer Crime and Its Barriers
- Countries Working Together
- Security Principles for International Use
- Determine if a Crime Has Indeed Been Committed
- When Should Law Enforcement Get Involved?
- Citizen versus Law Enforcement Investigation
- Investigation of Any Crime
- Role of Evidence in a Trial
- General Rules for Evidence
- Evidence Requirements
- Evidence Collection Topics
- Chain of Custody
- How Is Evidence Processed?
- Evidence Types
- Hearsay Rule Exception
- Privacy of Sensitive Data
- Privacy Issues - U.S. Laws as Examples
- European Union Principles on Privacy
- Routing Data Through Different Countries
- Employee Privacy Issues
- Computer Forensics
- Trying to Trap the Bad Guy
- Companies Can Be Found Liable
- Sets of Ethics
- Ethics - mile2
- Ethics - Computer Ethics Institute
- Ethics - Internet Architecture Board
- GAISP - Generally Accepted Information Security Principles

Module 19: Physical Security

- Physical Security - Threats
- Different Types of Threats & Planning
- Facility Site Selection
- Facility Construction
- Devices Will Fail
- Controlling Access
- Possible Threats
- External Boundary Protection
- Lock Types
- Facility Access
- Piggybacking
- Securing Mobile Devices
- Entrance Protection
- Perimeter Protection - Fencing
- Perimeter Protection - Lighting
- Perimeter Security - Security Guards
- Surveillance/Monitoring
- Types of Physical IDS
- Electro-Mechanical Sensors
- Volumetric Sensors
- Facility Attributes
- Electrical Power
- Problems with Steady Power Current
- Power Interference
- Power Preventive Measures
- Environmental Considerations
- Fire Prevention
- Automatic Detector Mechanisms
- Fire Detection
- Fire Types
- Suppression Methods
- Fire Extinguishers
- Fire Suppression
- Fire Extinguishers